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ABSTRACT 

Secondary analyses of international large-scale assessments (ILSA) commonly 

characterize relationships between variables of interest using correlations. However, the accuracy 

of correlation estimates is impaired by artefacts such as measurement error and clustering. 

Despite advancements in methodology, conventional correlation estimates or statistical models 

not addressing this problem are still commonly used when analyzing ILSA data. 

This dissertation examines the impact of both the clustered nature of the data and 

heterogeneous measurement error on the correlations reported between background data and 

proficiency scales across countries participating in ILSA. In this regard, the operating 

characteristics of competing modeling techniques are explored by means of applications to data 

from PISA 2012. Specifically, the estimates of correlations between math self-efficacy and math 

achievement across countries are the principal focus of this study. Sequentially employing four 

different statistical techniques, a step-wise model refinement approach is used. After each step, 

the changes in the within-country correlation estimates are examined in relation to (i) the 

heterogeneity of distributions, (ii) the amount of measurement error, (iii) the degree of clustering, 

and (iv) country-level math performance. 



 

The results show that correlation estimates gathered from two-dimensional IRT models 

are more similar across countries in comparison to conventional and multilevel linear modeling 

estimates. The strength of the relationship between math proficiency and math self-efficacy is 

moderated by country mean math proficiency and this was found to be consistent across all four 

models even when measurement error and clustering were taken into account. Multilevel 

multidimensional mixture IRT modeling results support the hypothesis that low-performing 

groups within countries have a lower correlation between math self-efficacy and math 

proficiency. A weaker association between math self-efficacy and math proficiency in lower 

achieving groups is consistently seen across countries. A multilevel mixture IRT modeling 

approach sheds light on how this pattern emerges from greater randomness in the responses of 

lower performing groups. The findings from this study demonstrate that advanced modeling 

techniques not only are more appropriate given the characteristics of the data, but also provide 

greater insight about the patterns of relationships across countries. 
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Chapter 1: Introduction 

1.1 Problem Overview 

International comparative studies of student achievement such as the IEA's Trends in 

International Mathematics and Science Study (TIMSS) and Progress in International Reading 

Literacy Study (PIRLS), and the OECD's Programme for International Student Assessment 

(PISA) receive a great deal of attention by researchers and policy makers across the world 

(Rutkowski & Rutkowski, 2010). Beside their many other uses, the main argument in favor of 

international large-scale assessments (ILSAs) is that countries can better understand the strengths 

and weaknesses of their education systems when they are compared to the education systems in 

other countries (Porter & Gamoran, 2002). ILSAs provide rich databases to examine students’ 

cognitive skills as well as the relationships of those skills with numerous background variables, 

such as students’ socioeconomic backgrounds and attitudes related to their learning and 

experiences in schools. For many years, the results from ILSAs have informed education policies 

in many ways such as pedagogy, teacher training, and hours of instruction (Heyneman & Lee, 

2014). On the other hand, the secondary users of ILSA data are cautioned regarding the 

limitations of ILSAs and potential misinterpretations of the results from ILSA data analysis 

(Lockheed & Wagemaker, 2013; Singer & Braun, 2018).  

Although educational assessment focused mostly on measuring students’ cognitive skills 

in certain subject matters for quite some time, it has been well-accepted in the field that 

numerous contextual factors play important roles in educational practices and outcomes 

(Rutkowski & Rutkowski, 2010). Therefore, researchers have been careful about taking objective 

characteristics such as gender, socio-economic background, school characteristics as well as non-
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cognitive factors such as students’ attitudes and beliefs into account in the course of interpreting 

students’ cognitive performances and making inferences to inform educational policies and 

practices. Thus, there have been substantial efforts to improve background questionnaires in 

ILSAs and to enrich the databases to allow for the examination of the relationships between 

students’ cognitive skills and many other non-cognitive background measures (Porter & 

Gamoran, 2002). For instance, PISA distinguishes between minor and major assessment domains 

and includes additional context questionnaires specific to the major domain for any given cycle. 

In 2015, the major domain was science and the context questionnaire contained not only domain-

specific measures for students such as enjoyment of science and environmental awareness, but 

also for teachers and school administrators such measures as science teacher collaboration and 

school learning environment for science. Although there are domain-independent measures that 

are used in every PISA cycle to make system-level trend data available (OECD, 2017), 

additional domain-specific measures are intended to capture in-depth information that is related 

to the major domain of the cycle. In PISA technical reports, the purpose of the background 

instruments is stated as helping policy makers and educators understand the reasons behind 

different levels of student achievement (OECD, 2014). Nevertheless, secondary analysts and 

policy makers are advised not to directly link differences in educational practices to differences 

in student performance (Singer & Braun, 2018). 

To support inferences regarding educational outcomes and their relationships to other 

factors, it is critical for ILSAs to ensure cross-cultural comparability of the measures and assure 

the validity and the reliability of the data that is collected. In this regard, the development of both 

cognitive and non-cognitive measures is aided by enlisting committees of subject matter experts, 

developing assessment frameworks, conducting field studies, and using statistical modeling 
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approaches that provide evidence for the psychometric quality and construct validity of the 

measures. That said, ensuring cross-cultural comparability for non-cognitive measures in cross-

national studies still requires attention and improvement (He & van de Vijver, 2015; Rutkowski 

& Rutkowski, 2010).  

For instance, a recurring concern related to the background questionnaires in ILSAs is 

about a peculiar but consistent finding regarding certain non-cognitive measures and their 

relationships to achievement, commonly referred to as the “attitude-achievement paradox”. It has 

been shown for certain non-cognitive measures that averages of students’ attitudes are negatively 

correlated with average cognitive performance at the between-country level, even though the 

correlations are positive at the within-country level (Buckley, 2009; Kyllonen et al., 2010; Van 

de gaer et al., 2012). There have been many studies and potential explanations proposed 

regarding these correlations being of opposite signs. Although many promising approaches and 

explanations were suggested by researchers, a widely accepted explanation for this paradox 

remains to be found (Kyllonen & Bertling, 2014; Stankov et al., 2018).  

It is known that data aggregation is associated with the problem of ecological fallacy, 

which is the tendency to draw conclusions about individual-level correlations based on 

aggregate-level (or ecological) correlations (Robinson, 1950). In ILSAs, schools are selected 

within countries and the data is collected from random samples of the population of eligible 

students within selected schools. The expectation that country-level correlations are in the same 

direction as individual-level correlations in ILSA data is an example of an ecological fallacy. On 

the other hand, many researchers are not convinced that this is the only – or even the best – 

explanation for the attitude-achievement paradox. It is argued that the reversal of direction 

demands more explanation than just having to deal with spurious correlations even though 
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aggregating data tends to change the magnitude of relationships seen at the within-country level 

(Kyllonen & Bertling, 2014; Stankov et al., 2018). Furthermore, the reversal of direction may be 

better explained by Simpson’s paradox (Simpson, 1951), which suggests that a strong association 

observed within groups can disappear or reverse in direction due to a confounding variable when 

the groups are combined. Stankov et al. (2018) extended their study on the construct validity of 

the anchored scales used in PISA 2012 and briefly explored Simpson’s paradox in relation to the 

attitude-achievement paradox. However, they were not able to find a satisfactory interpretation 

of the results. 

An alternative explanation that deserves consideration lies in the reliability and cross-

cultural comparability of non-cognitive measures. The attitudinal surveys in ILSAs typically 

employ response formats based on self-reported rating scales. Self-reports employing Likert-type 

scales are the main source of data available in ILSAs on students’ affective states and behavioral 

dispositions. In other words, our knowledge about students’ beliefs and attitudes is limited to 

what students choose to disclose about themselves by responding to probes using these rating 

scales. Self-reports using Likert scales are known to be vulnerable to factors such as social 

desirability or a tendency to extreme response style that influence respondents’ objectivity in 

representing themselves (Khorramdel & von Davier, 2014).  In addition, due to the concerns 

with test length and fatigue effects, the number of items that are used to measure each non-

cognitive construct is often limited to between four and eight items. This limits the amount of 

information that can be obtained. These are all significant limitations of Likert-type background 

measures in the ILSA context, and ensuring reliability, validity, and cross-cultural comparability 

becomes a challenge under such conditions (Kyllonen & Bertling, 2014; Kyllonen et al., 2010).  
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Furthermore, underlying differences among groups can result in different amounts and 

distributions of uncertainty in the non-cognitive measures and this can threaten the cross-cultural 

comparability of the measurement. That is, among countries or among regions within a country 

there may be modest but non-trivial differences in how students’ response styles or their 

understanding of the questions introduce both construct-irrelevant variance and greater 

measurement error. For instance, low scale reliability for certain developing countries raises 

concerns regarding the comparability of non-cognitive measures (Rutkowski & Rutkowski, 

2010). The heterogeneity in the amount of measurement error across countries may explain some 

of the large differences among within-country correlations of attitudinal measures and 

achievement. 

Response style differences and reference group effects have been widely examined in the 

field regarding the attitude-achievement paradox and the construct validity of the non-cognitive 

background measures (Heine et al., 2002; Kyllonen & Bertling, 2014; Min et al., 2016). It is 

argued that self-report rating scales suffer from individuals’ tendencies to endorse extreme 

categories in items regardless of what the items are designed to measure (Baumgartner & 

Steenkamp, 2001; Ju & Falk, 2019; Khorramdel & von Davier, 2014; Lu & Bolt, 2015; Min et 

al., 2016). That is, respondents can favor the lower or upper-level response categories in an item 

no matter the statement in the item. This is arguably an important limitation of Likert-type 

scales. With regard to the cross-national studies, it has been shown that cultural differences in 

response style can especially lead to misleading results and should not be ignored (Van de gaer et 

al., 2012).  

Although response bias could be a part of the reason behind the heterogeneous 

uncertainty in background measures across countries, the results from studies that take the 
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response bias into account while analyzing data from ILSAs are mixed (Ju & Falk, 2019). For 

instance, the relationships between extreme response style and other constructs have been found 

to be relatively small at the within-country level (Bolt & Newton, 2011). However, von Davier 

(2018) found that (lower) proficiency measures are consistently associated with membership in 

those subpopulations that exhibit extreme response styles. Additionally, studies that utilize some 

adjustments based on participants’ response style did not result in substantial changes in the 

findings (He & van de Vijver, 2015; Lu & Bolt, 2015). Approaches such as anchoring vignettes 

(King et al., 2004) that were used in PISA 2012 for certain non-cognitive measures have been 

criticized in terms of leading to a significant change in the factorial structure of the constructs 

and introducing statistical artefacts (Stankov et al., 2018; von Davier, Shin, et al., 2018). 

In light of unresolved issues regarding the substantial heterogeneity observed in the 

correlations across countries, it can be argued that the impact of measurement error, as well as 

the nested structure of the ILSA data, on the statistical inferences should be explored further. 

Although a single explanation may not be found regarding the attitude-achievement paradox, 

statistical inferences should account for the fact that measurement errors tend to be 

heterogeneous across countries and appropriate modeling approaches should be employed when 

analyzing data from ILSAs.  

1.2 Purpose of the Study 

The purpose of the study is to investigate, in a particular instance, the variation among 

within-country correlations based on conventional estimates gathered from analyzing 

international large-scale assessment data and to determine the extent to which this variation is 
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due to the heterogeneity in the amount of measurement error, as well as the clustered nature of 

the data. 

In educational research, it is very common to sample schools or classrooms of students to 

collect data and ILSAs are no different. Even though it is more desirable to design studies with 

students being the unit of observation, it is neither practical nor cost effective to randomly select 

students without selecting multiple students from classrooms and schools for a study. Moreover, 

studies may rely on teacher information as well, and in order to link teachers to students, the 

most straightforward sampling approach would be to select classrooms taught by certain 

teachers, and then to sample students from within these classes. However, cluster sampling 

brings some challenges for secondary analysts. Different from studies in which each observation 

is assumed to contribute unique information, participants drawn from a particular cluster share 

the same context, so that the total amount of information is less than what would be obtained 

from a random sample of the same size. The impact of clustering on the power of the study can 

be quantified in terms of a design effect (Snijders, 2005). Clustering also limits the use of certain 

statistical modeling techniques such as standard regression analysis with ordinary least square 

estimation due to violations of certain independence assumptions (Raudenbush, 1993). The 

importance of separating within-group and between-group effects has been well recognized 

(Cronbach & Webb, 1975; Raudenbush, 1993). Therefore, appropriate statistical approaches 

such as multilevel linear modeling should be utilized while analyzing ILSA data.  

Furthermore, the reliability of self-reported rating scales measuring non-cognitive skills 

in ILSAs is arguably still below desired levels (Rutkowski & Rutkowski, 2010). Measurement of 

latent constructs is at the heart of social sciences and the consequences of fallible measurement 

have to be acknowledged and understood better in order to avoid potentially misleading 
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inferences. With regard to the background measures in ILSAs, research regarding cultural 

differences in response style is extensive and well-known. Further, reference group effects on the 

construct validity can certainly be a part of the explanation for aforementioned attitude-

achievement anomaly (Van de gaer et al., 2012). However, there may be other reasons for 

varying levels of uncertainty in the self-report measures. For instance, certain groups of students 

may have difficulty understanding the questions asked in background questionnaires due to low 

reading ability and/or unfamiliarity with the types of questions. This may result in heterogeneity 

of measurement error among and within countries. Additionally, students with low cognitive 

skills may tend to skip questions or to give the same response to every question without reading 

the question stems (i.e., straightlining behavior). This introduces construct irrelevant variance 

and, if not accounted for, leads to increased errors of measurement and to problems with student-

level background measures, especially in lower-achieving countries. Rutkowski and Rutkowski 

(2010) show that student-level background measures tend to display problems in certain less 

economically developed countries. 

It is well documented that the strength of the reported relationships between many 

background scales and cognitive measures differs across countries and, in some cases, these 

differences can be quite large. For example, students’ math self-concept can be a significant 

predictor of their math achievement in Portugal (r=0.64) while this relationship is rather weak in 

Colombia (r=0.15) (OECD, 2014). However, this heterogeneity across countries may result from 

the imperfect measurement and the limitations of self-report attitudinal rating scales, and not be 

due to differences in the correlations of the underlying constructs of math literacy and math self-

concept. When measurement error is not accounted for properly, having an apparently weaker 

relationship in one country and an apparently stronger relationship in another country may not be 
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due to the real differences in the magnitude of the relationships but, rather, due to the measure 

itself and differences in its precision across population. Therefore, statistical modeling 

techniques that simultaneously take into account measurement error and clustering should 

provide different and more credible results than those based on statistical analyses in which 

heteroscedastic nature of the measurement error is ignored (Fox, 2007; Kamata, 2001; Pastor, 

2003; Sulis & Toland, 2017). In fact, with techniques that properly account for the uncertainty in 

measures, the results may yield a much more homogeneous picture regarding the distribution of 

within-country attitude-achievement relationships. In such a case, the results should offer more 

accurate country-level correlations for background measures with proficiency and may help to 

address the attitude-achievement paradox. 

To summarize, the main goal of the study is to examine the impact of both the clustered 

nature of the data and the heterogeneous measurement error on the correlations reported between 

background data and proficiency scales across countries participating in ILSAs. In this regard, 

the operating characteristics of competing modeling techniques are explored by means of 

applications to data from PISA 2012 and the estimates of correlations between math self-efficacy 

and math achievement across countries are the focus of this study. 

Research Questions 

Based on the need for a better understanding of the impact of measurement error and 

clustering on the correlation estimates gathered from ILSA data, five main research questions 

have been formulated. The first three examine different modeling techniques and their 

performance in properly accounting for measurement error and clustering compared to 

conventional correlation estimates of the relationship between math self-efficacy and math 

achievement. Although within-country relationships and their distribution across the countries 
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are the main focus of the study, the fourth research question explores the distribution of the 

correlation estimates at the level of schools within a country to investigate whether similar 

patterns are seen at the level of schools and at the level of countries. Finally, the fifth research 

question examines whether the accuracy of the correlation estimates can be improved by 

combining multiple background measures. To this end, a composite measure that combines math 

self-efficacy, math anxiety, and math self-concept is used as the background measure in the 

models. 

Research questions are formulated as follow: 

1. When modeling techniques are used to properly account for measurement error in the 

observed data, do the estimates of within-country relationships between math self-

efficacy and math achievement display greater homogeneity across countries than the 

conventional, within-country correlation estimates?  

2. When the clustered nature of the observed data is taken into account, do the estimates of 

within-country relationships between math self-efficacy and math achievement have 

greater homogeneity across countries than displayed by the conventional correlation 

estimates?  

3. When modeling techniques are used to properly account for both measurement error and 

clustering in the observed data, do the estimates of within-country relationships between 

math self-efficacy and math achievement show greater homogeneity across countries than 

that displayed by the conventional correlation estimates or the ones gathered from the 

models that account for either measurement error or clustering only?   

4. Are the relationship patterns in school-level correlations and school-level proficiencies 

within countries similar to the patterns seen at the country-level?  
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5. When participants’ attitudinal background measure comprises multiple indicators (math-

self-efficacy, math anxiety, and math self-concept), how different are the changes seen in 

the correlation estimates when clustering is taken into account compared to those seen 

when math self-efficacy is used as a single background measure? 

1.3 Significance of the Study 

Conventional correlations are commonly calculated to characterize relationships between 

variables of interest in secondary analyses of ILSA data. However, the accuracy of correlation 

estimates can be impaired by statistical artefacts such as measurement error and clustering 

(Carroll et al., 2006; Fuller, 1987; Jones, 1979; Woodhouse et al., 1996). As noted earlier, there 

have been numerous advancements over the years in statistical modeling techniques to properly 

take both measurement error and the clustered nature of the data into account. Nevertheless, 

conventional correlation estimates (e.g., Pearson correlations) or statistical models which can 

only treat part of the problem (e.g., multilevel linear models) are still commonly used when 

analyzing data gathered from complex study designs such as ILSAs.  

This study carries out a comprehensive investigation of the impact of measurement error 

and clustering on statistical inferences by employing data from the PISA 2012 database. In 

particular, unresolved issues regarding the heterogeneity in relationships between certain 

background and cognitive measures seen across the countries are explored. With the proposed 

step-wise model refinement strategy, it is possible to provide comparisons among available 

statistical modeling techniques and insights about how large-scale assessment data can be better 

analyzed.  
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Chapter 2: Theoretical Background 

2.1 ILSA Study Design and Data Properties 

International large-scale assessments have increased in number and participation as they 

have become the main resources for researchers and policy makers who are interested in 

educational accountability and monitoring at the system level (Rutkowski et al., 2014). With the 

help of many advancements in their methodology and design, ILSA data facilitate certain 

comparisons across countries in terms of differences among education systems and their impact 

on educational outcomes. Although they provide useful evidence regarding the school systems of 

participating jurisdictions, one should keep in mind that ILSAs are cross-sectional studies that 

are limited in the kinds of inferences they can generally support. That is, patterns of relationships 

revealed in ILSA studies are cross-sectional and observational in nature and, generally, are not 

suitable for making causal inferences. In fact, crude analysis of ILSA data and summary 

information such as rankings can be often misleading and lead to unwarranted policy changes 

(Goldstein & Spiegelhalter, 1996; Singer & Braun, 2018). The complex ILSA study designs 

permit flexible and affordable data collection at a large scale but require attention to data quality 

and mandate employing appropriate procedures in the data analysis (Rust, 2014).  

Clustered Nature of the Data 

Collecting comparable information about students’ performance at a large-scale demands 

complex study designs and sampling approaches. Because the main goal of ILSAs is to make 

inferences at the population level, data are collected from representative samples of students 

within participating countries without requiring every student to participate in the assessment. 

Stratified sampling techniques are used in ILSAs to obtain representative samples of students 
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from participating countries. In PISA, for example, a two-stage stratified sampling design 

involves first sampling schools that have eligible 15-year-old students and then selecting a 

random sample of students from these randomly sampled schools (OECD, 2014).  

A multi-stage sampling technique has consequences for the amount of information 

gathered from a sample. Students who attend the same school share a context that makes them 

more similar (in contrast to students who attend different schools) in terms of their background 

and educational outcomes such as what they learn and how motivated they are to learn. One 

consequence of this within-context correlation is that the information gleaned from each 

observation is not as unique as that obtained from a single observation in a simple random 

sampling (SRS) design. In terms of relative precision, the advantage of a SRS over a complex 

design with the same sample size is termed the design effect. The design effect can be calculated 

by accounting for the intra class correlation (ICC or 𝜌𝜌) which is a measure of the degree of 

dependence among the observations in terms of the outcome of interest (Kish, 1965), as shown 

below.  

 𝐼𝐼𝐼𝐼𝐼𝐼 =
𝑉𝑉𝑉𝑉𝑟𝑟𝑖𝑖𝑉𝑉𝑉𝑉𝑉𝑉𝑒𝑒 𝑏𝑏𝑒𝑒𝑏𝑏𝑏𝑏𝑒𝑒𝑒𝑒𝑉𝑉 𝑠𝑠𝑉𝑉ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑠𝑠 (𝜎𝜎2𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏)
𝑇𝑇𝑜𝑜𝑏𝑏𝑉𝑉𝑜𝑜 𝑣𝑣𝑉𝑉𝑟𝑟𝑖𝑖𝑉𝑉𝑉𝑉𝑉𝑉𝑒𝑒 (𝜎𝜎2𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 + 𝜎𝜎2𝑏𝑏𝑖𝑖𝑏𝑏ℎ𝑖𝑖𝑏𝑏)  (2.1) 

 𝐷𝐷𝑒𝑒𝑠𝑠𝑖𝑖𝑔𝑔𝑉𝑉 𝐸𝐸𝐸𝐸𝐸𝐸𝑒𝑒𝑉𝑉𝑏𝑏 =  
𝑉𝑉𝑉𝑉𝑟𝑟𝑖𝑖𝑉𝑉𝑉𝑉𝑉𝑉𝑒𝑒 𝑜𝑜𝐸𝐸 𝑏𝑏ℎ𝑒𝑒 𝑠𝑠𝑏𝑏𝑉𝑉𝑏𝑏𝑖𝑖𝑠𝑠𝑏𝑏𝑖𝑖𝑉𝑉 𝑢𝑢𝑉𝑉𝑢𝑢𝑒𝑒𝑟𝑟 𝑏𝑏ℎ𝑒𝑒 𝑉𝑉𝑉𝑉𝑏𝑏𝑢𝑢𝑉𝑉𝑜𝑜 𝑢𝑢𝑒𝑒𝑠𝑠𝑖𝑖𝑔𝑔𝑉𝑉

𝑉𝑉𝑉𝑉𝑟𝑟𝑖𝑖𝑉𝑉𝑉𝑉𝑉𝑉𝑒𝑒 𝑜𝑜𝐸𝐸 𝑏𝑏ℎ𝑒𝑒 𝑠𝑠𝑏𝑏𝑉𝑉𝑏𝑏𝑖𝑖𝑠𝑠𝑏𝑏𝑖𝑖𝑉𝑉 𝑏𝑏𝑖𝑖𝑏𝑏ℎ 𝑆𝑆𝑆𝑆𝑆𝑆 𝑢𝑢𝑒𝑒𝑠𝑠𝑖𝑖𝑔𝑔𝑉𝑉
  

= 1 + (𝑉𝑉 − 1) ∗ 𝐼𝐼𝐼𝐼𝐼𝐼 , 

(2.2) 

where n represents the average number of individuals across schools. Effective sample size can 

also be calculated based on the ICC and the design effect. In studies with correlated 

observations, effective sample size is smaller than the actual sample size. 
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 𝐸𝐸𝐸𝐸𝐸𝐸𝑒𝑒𝑉𝑉𝑏𝑏𝑖𝑖𝑣𝑣𝑒𝑒 𝑠𝑠𝑉𝑉𝑚𝑚𝑠𝑠𝑜𝑜𝑒𝑒 𝑠𝑠𝑖𝑖𝑠𝑠𝑒𝑒 =
𝑁𝑁

𝐷𝐷𝑒𝑒𝑠𝑠𝑖𝑖𝑔𝑔𝑉𝑉 𝑒𝑒𝐸𝐸𝐸𝐸𝑒𝑒𝑉𝑉𝑏𝑏
=

𝑁𝑁
1 + (𝑉𝑉 − 1) ∗ 𝐼𝐼𝐼𝐼𝐼𝐼

 , (2.3) 

where N represents the actual total sample size. 

Secondary analysts should keep in mind that ILSA data are collected at the individual 

level and not at the school or country level. That is, data are collected from the students even 

though the goal is making inferences at the group level. The use of individual level data at the 

aggregate level may trigger an ecological fallacy. As mentioned earlier, ecological fallacy (or 

aggregation bias) occurs when the statistical inferences made at the group level are generalized 

to the individual level without enough support (Diez-Roux, 1998; Robinson, 1950; Schwartz, 

1994; Wakefield, 2008). Therefore, to avoid aggregation bias, a trend observed at the aggregate 

level should not be expected to follow the trend observed at the individual level. For instance, a 

surprisingly powerful correlation between chocolate intake per capita and the number of Nobel 

laureates can be seen when the data is based on country-level averages (Messerli, 2012). It is 

unjustifiable, however, to conclude that chocolate consumption enhances cognitive function and 

increases the number of Nobel laureates in a country. Robinson (1950) demonstrates that group 

level (or ecological) correlations cannot validly be used as substitutes for individual-level 

correlations and can lead to meaningless or faulty conclusions. Many similar examples of 

spurious and unwarrantable correlations are demonstrated by Vigen (2019).   
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Measurement Error 

Cognitive Measures 

It is a challenge for ILSAs to collect sufficient data to achieve adequate construct 

representation while keeping individual testing time short enough to avoid fatigue effects, 

especially in a low-stakes context (von Davier & Sinharay, 2014). A comprehensive 

representation of the focal skill domains requires a large number of items that tap different facets 

of the construct, as well as varying in level of difficulty. In order to avoid hours of testing time 

per student, a matrix sampling (item) design is adopted by which each item is administered to 

only a random sample of respondents so that each student is administered only a portion of all 

items measuring the construct (Braun & von Davier, 2017). In order to ensure that each pair of 

items appears together a predetermined number of times, a balanced incomplete block (BIB) 

design is used in the development of the test forms. In BIB designs, items are organized in 

blocks and blocks are systematically rotated in the construction of each test booklet. What makes 

this block design ‘incomplete’ is that each form contains only some of the item blocks, and not 

all blocks appear together with all other blocks. 

The complex item sampling design used in ILSAs has certain implications for 

achievement scaling methodology. Due to the matrix sampling, individual-level measurement is 

not as accurate as it could be when all items were taken by every student in the sample. 

Compared to testing programs yielding scores for individual students, ILSAs aim at group-level 

score reporting only and, thus, produce proficiency estimates that contain a comparably larger 

amount of measurement error at the student level (von Davier, Gonzalez, & Mislevy, 2009). 

Nonetheless, a set of intermediate individual-level performance values, termed plausible values, 

are generated by latent regression modeling which incorporates both students’ responses to the 
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items administered and the student background information collected by the context 

questionnaires (Braun & von Davier, 2017). Plausible values are randomly drawn from an 

empirically derived family of (posterior) distributions of score values, specific to each individual. 

The use of background information enhances the precision of sub-population achievement values 

(Mislevy, 1991; von Davier, Gonzalez, & Mislevy, 2009). Plausible values can be used to 

generate approximately unbiased estimates of sub-population distributional characteristics, as 

well as estimates of the variance in those estimates due to measurement error (Martin et al., 

2016). However, plausible values should not be treated as (usual) test scores for individuals and 

they are intended to be used as a set (at least 5 imputed values are provided in ILSA databases) 

by following appropriate procedures as described in the literature (Little & Rubin, 2002; 

Mislevy, 1991; von Davier, Gonzalez, & Mislevy, 2009). 

With matrix sampling, each student is administered only a portion of the item pool: 

different students may answer different sets of questions, thus limiting the use of traditional 

number-correct scoring (von Davier, Gonzalez, & Mislevy, 2009). Consequently, ILSAs 

designers employ item response theory (IRT; Lord & Novick, 1968) in the development and 

scaling of the measures. IRT, also known as latent trait theory, estimates individuals’ ability 

levels on an underlying trait based on both their responses and the psychometric properties of 

items (Embertson & Reise, 2000). In the IRT framework, item parameters are assumed to be 

(approximately) sample independent. Hence, ability scores can be reported on the same scale 

even though students are not administered the same set of items. Although item parameters are 

assumed to be invariant over populations, this assumption can be tested to assure whether 

reported scores are indeed comparable across different groups (de Ayala, 2009).  



17 
 

Background Questionnaire and Self-reports 

Over the years, there have been many studies demonstrating strong correlations between 

students’ achievement and their self-reported attitudes and behaviors. For example, measures 

such as self-concept and self-efficacy have been shown to be strongly associated with student 

achievement, even more strongly than many other measures of attitudes towards school and 

learning (Lee, 2009; Lee & Stankov, 2013). Recent studies even suggest that the development of 

character skills (or soft skills) should be incorporated in school practices because they are related 

to broader life outcomes and quality of life (Kautz et al., 2014; Levin, 2012). As these variables 

and their inter-relationships are important for education policy, information about students’ 

demographic characteristics, attitudes and school context, and their relationships to cognitive 

skills have become an important focus in ILSAs. As a result, background questionnaires have 

been expanded over time (Jude & Kuger, 2018). 

It is necessary to ensure the psychometric quality of the component non-cognitive 

measures not only because it is important to have a better understanding of students’ attitudinal 

backgrounds and learning context and their relationships to the cognitive outcomes, but also 

because background measures are used in the generation of plausible values. Therefore, 

problems with the background measures can influence both the measurement of the learning 

outcomes and the observed relationships between those learning outcomes and background 

measures (Rutkowski & Rutkowski, 2010).  

The use of plausible values appropriately enables the estimation of measurement error in 

cognitive outcomes in ILSAs (Braun & von Davier, 2017) but the extent and impact of 

measurement error in background measures is still unresolved. In addition, construct validity and 

cross-cultural comparability of non-cognitive measures have become a major concern in recent 
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years. One of the reasons for these concerns originates from the frequent use of Likert scales in 

the measurement of non-cognitive skills. Likert scales are judged to be problematic for making 

cross-country comparisons (Kyllonen & Bertling, 2014). It has been shown that simple rating 

scales can introduce construct-irrelevant variance because of differences in response styles and 

non-equivalence across different languages and cultures (Buckley, 2009; He & van de Vijver, 

2015). Even though there are studies which provide evidence of response bias issues within 

countries and languages (Yap et al., 2014), the concerns regarding response-style differences are 

mostly discussed in the context of cross-country comparisons (Jude & Kuger, 2018). Many 

studies also suggest that response style differences may be the reason behind the contradictory 

results regarding the negative correlations between attitudinal measures and achievement at the 

country level; namely, the attitude-achievement paradox (Buckley, 2009; He & van de Vijver, 

2015; Kyllonen et al., 2010). 

Another concern relates to self-report measures in general. Self-reports are shown to be 

vulnerable to certain moderating factors. For instance, Marsh and Parker (1984) demonstrated 

that the level of socio-economic status and academic performance of the school are strongly 

related to students’ self-concept. This phenomenon, namely the big-fish-little-pond effect, 

suggests that being in a low-ability/low-performing school can increase students’ self-concept, 

especially if they perform above the (low) average of their peers. Furthermore, a study by 

Hopfenbeck and Maul (2011) discussed another source of incomparability, as they presented 

evidence that students with lower performances may not provide reflective responses to the 

questionnaires, so that the relationships between their non-cognitive skills and academic 

performances may not represent the true strength of the relationships. This may also result from 

what is known as the Dunning-Kruger effect in the field of psychology. The Dunning-Kruger 
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effect asserts that people who lack metacognition (or self-monitoring) may not be aware of their 

lack of skills and thus may overestimate their abilities (Dunning, 2011; Kruger & Dunning, 

1999). While response styles can be considered as systematic errors that introduce bias into 

comparisons, studies that imply a lack of understanding or metacognition may play a role in 

reducing the quality of self-reports do suggest that unsystematic, random error components may 

be increased in these cases. 

Even though there appears to be a consensus in the literature that construct validity and 

cross-cultural measurement equivalence cannot be assumed but only be empirically supported, 

most of the statistical procedures usually make the assumption of measurement invariance 

(Gustafsson, 2018; van de Vijver & He, 2016). When measurement invariance does not hold and 

the amount and the distribution of the measurement error differ across groups, the relationships 

between certain factors and the outcome of interest (at the country level) may appear more 

heterogeneous than is actually the case.  

2.2 Existing Advances in Modeling Data with Measurement Error and Clustering 

In this section, a selection of candidate models that properly account for measurement 

error and/or clustering is described. On the basis of the review of these approaches, the analytical 

techniques that were conducted in this study were chosen to be most suitable for the 

characteristics of the data to be analyzed, as well as for the research questions. These are 

described in more detail in Chapter 3. 

2.2.1 Ordinary Linear Regression Model with Adjustments 

Ordinary linear regression analysis is commonly used to investigate relationships among 

variables of interest in cross-sectional studies. However, it has been extensively demonstrated 
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that errors in the covariates (x) as well as in the criterion variable (y) in a linear regression model 

lead to incorrect statistical inferences (Carroll et al., 2006; Fuller, 1987; Jones, 1979; Woodhouse 

et al., 1996). Measurement error that is large and unaccounted for has been shown to attenuate 

regression coefficients and suggest weaker estimated relationships than the true strength of the 

relationships.  

Errors in the covariates (x) have received relatively more attention in the literature. This 

is because errors in y and errors in x are treated differently in a linear regression model and, as a 

result, their impact on the estimated regression coefficients differs accordingly (Berkson, 1950). 

In a univariate regression, suppose x, the predictor of y, is measured without error. Suppose 

further that y is measured with error (y*). The noise in y* becomes a part of the residual term e in 

the regression equation and is minimized by the fitted regression line. Therefore, even though the 

observed relationship between y and x weakens due to the uncertainty in y*, the estimated 

regression coefficient is not biased and has the smallest standard error among all linear unbiased 

estimators according to the Gauss-Markov theorem (Lewis-Beck et al., 2004).  

 𝑦𝑦∗  = 𝛽𝛽(𝑥𝑥) + e (2.4) 

Now suppose the observed predictor is a measure of the true value of x with error d. In 

this case, the measurement error d in the predictor blends into both the predicted value of the 

criterion variable (𝑦𝑦∗́ ) and the residual term (�́�𝑒). As a result, the fitted regression line becomes 

biased no matter if y is measured with error (𝑦𝑦∗) or without error (y) and the estimated regression 

coefficient (�́�𝛽) is biased toward zero in comparison to the true regression coefficient (𝛽𝛽) 

(Berkson, 1950).  
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 𝑦𝑦∗́ = �́�𝛽(𝑥𝑥 + 𝑢𝑢) + é (2.5) 

Note above, measurement errors in both x and y are assumed to be linearly additive. In 

the field of psychometrics, this is fundamental to Classical Test Theory (CTT) which assumes 

that the observed score is a linear function of the true score and random error (Lord & Novick, 

1968). When the variance of errors is conditional on the true values of x and y respectively, 

which is a more realistic assumption in many situations, the uncertainty cannot be handled with 

standard methodology (Buonaccorsi, 1996). Moreover, in multiple regression with more than one 

independent variable with error, the problems are more difficult to address because the estimated 

regression coefficients can become biased in unpredictable directions (Carroll et al., 2006).  

Errors-in-variables Models (to adjust for measurement error) 

Errors-in-variables (EIV) models, which have been mostly utilized in the econometrics 

literature, offer strategies for both linear and non-linear regression problems to account for the 

measurement error in independent variables (Anderson, 1984; Fuller, 1987). Classical EIV 

models assume that the measurement error is additive and its variance is constant (Carroll et al., 

2006) similar to the standard linear regression methodology. There are two types of classical EIV 

models; functional and structural. In functional modeling, the independent variables are assumed 

to be fixed and non-stochastic. That is, no specific assumptions are made about the distributional 

structure of unobserved (or true) variables and the distribution of the predictor is not modelled 

parametrically (Battauz et al., 2011; Carroll et al., 2006). In structural modeling, on the other 

hand, the independent variables are assumed to be random and the distribution of the true 

predictor is modelled parametrically by employing likelihood estimation procedures (Anderson, 

1984; Carroll et al., 2006). 
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EIV models are not without limitations. For one, the assumption of the measurement 

error having constant variance is known to be limiting and not realistic in many cases. Advanced 

statistical techniques (e.g., Item Response Theory Models) are capable of treating heteroscedastic 

measurement error properly. Secondly, although they are more flexible in comparison to 

functional models, structural models raise a concern in regard to the assumptions made about the 

distribution of the random independent variables (Carroll et al., 2006). Furthermore, Carroll et al. 

(2006) emphasize that correcting for measurement error bias often increases the variance of the 

estimated coefficients and leads to wider confidence intervals.  

Validity Generalization (to adjust for measurement error) 

Hunter and Schmidt (2004) show in their work on validity generalization (VG) that 

methodological and statistical artefacts across different studies, such as the error of measurement 

and sampling error, can alter the estimates of the correlations. They use the word “artefacts” to 

refer to the imperfections in studies that are not properties of nature but artefactual or man-made 

(Hunter & Schmidt, 2004). In particular, Hunter and Schmidt argue that heterogeneity in the 

observed correlations gathered from different situations increases as the reliability of the measure 

decreases. As a solution, they propose corrections for unreliability of the measurement 

instruments while conducting meta-analysis (Hunter & Schmidt, 2004). Schmidt and Hunter’s 

VG approach is seen as an attempt to integrate meta-analytic procedures with psychometric 

techniques to deal with measurement error (DeShon, 2003). On the other hand, such 

measurement error corrections arguably have many difficulties and limitations that are discussed 

extensively in Murphy’s book (2003) that offers a critical review on VG. One of the main 

arguments behind the criticism of VG is that the psychometric theory behind it is CTT (DeShon, 

2003). Similar to EIV models, in VG, one way to correct the correlation estimates for attenuation 



23 
 

due to measurement error is to use the reliability information which is assumed to be constant 

along the ability scale in the CTT framework and a limited way to treat the error of measurement 

(DeShon, 2003).  

Dummy Variables (to adjust for clustering) 

Clustering in the data gathered from cross-sectional studies such as ILSAs can be taken 

into account in an ordinary regression model by including a set of dummy variables as the 

indicators of the groups. For example, suppose one is interested in examining the relationship 

between x and y in a dataset gathered from five countries with sufficient sample sizes. Suppose 

further that between-country variance explains a considerable amount of the variance in y which 

has to be taken into account. Four dummy variables can be added to the ordinary regression 

equation (Equation 2.6) and differences in country means can be examined in terms of the degree 

to which they differ from the reference country mean.  

 
𝑦𝑦 = 𝛽𝛽1(𝑥𝑥) + 𝛽𝛽2(𝑉𝑉𝑜𝑜𝑢𝑢𝑉𝑉𝑏𝑏𝑟𝑟𝑦𝑦 2) + 𝛽𝛽3(𝑉𝑉𝑜𝑜𝑢𝑢𝑉𝑉𝑏𝑏𝑟𝑟𝑦𝑦 3) + 𝛽𝛽4(𝑉𝑉𝑜𝑜𝑢𝑢𝑉𝑉𝑏𝑏𝑟𝑟𝑦𝑦 4)

+ 𝛽𝛽5(𝑉𝑉𝑜𝑜𝑢𝑢𝑉𝑉𝑏𝑏𝑟𝑟𝑦𝑦 5) + 𝑒𝑒 
(2.6) 

One of the disadvantages of this approach is that the number of dummy variables and 

parameters increase substantially as the number of clusters increases. For example, if one were to 

examine a relationship within a country using a large dataset such as from an ILSA database and 

take the clustering by schools into account, it would lead to an increase in the number of 

parameters to be estimated by more than a hundred. Although it may be convenient with a 

smaller number of clusters, the increase in the number of parameters can become particularly 

problematic with more complex models and smaller within-group sample sizes. Moreover, 

ordinary regression models with dummy variables for groups are structured in a way that the 
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regression coefficients for groups are treated as fixed effects, which is why these models are 

sometimes called “fixed effects regression models” (Allison, 2009). Hence, any random effect 

resulting from group characteristics is confounded in the dummy variables and cannot be 

estimated separately (Allison, 2009).  

2.2.2 Latent Variable Models 

Item Response Theory 

One of the major advances in the field of psychometrics, Item Response Theory (IRT) is 

a probabilistic modeling framework in which a person’s ability is assumed to be an unobserved 

latent variable and is estimated based on both individuals’ responses to the items in an 

instrument, as well as item characteristics such as difficulty and discrimination (Lord & Novick, 

1968). In the IRT framework, measurement error is quantifiable and is not forced to be constant 

along the scale. Additionally, under certain conditions, IRT-based person ability estimates are 

independent of the set of items that were administered, which allows response data gathered 

from incomplete designs (e.g., matrix sampled cognitive measures used in ILSAs) to be used to 

estimate person abilities on a common scale (Fox & Glas, 2001). Many other features and 

advantages of IRT are extensively discussed in the literature (de Ayala, 2009; Edelen & Reeve, 

2007). 

In the usual IRT framework, the probability of observing a response pattern (�⃗�𝑥) 

conditional on the individual’s underlying latent trait 𝜃𝜃 is the product of the conditional 

probabilities of observing responses to each item given 𝜃𝜃. That is, 

 𝑃𝑃(�⃗�𝑥|𝜃𝜃) = �𝑠𝑠𝑖𝑖(𝑥𝑥 = 𝑥𝑥𝑖𝑖|𝜃𝜃)
𝐼𝐼

𝑖𝑖=1

 (2.7) 
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There are various IRT models that have been developed with different specifications. The 

simplest model for dichotomous responses, the one parameter logistic (1PL) model, assumes that 

items are characterized by their difficulty (also called ‘location’) only. This model can be used 

when the underlying latent trait is assumed to be continuous and unidimensional (de Ayala, 

2009). In particular, for such models (Rasch, 1960), item and person parameters can be 

conditioned on observed total scores which are the sufficient statistics (Fisher, 1922). In IRT 

models, the non-linear relationship of an unobserved latent variable and the probability of a 

response is usually modelled by using a logistic regression model. For example, in 1PL IRT 

models, the conditional probability of a correct response given individual’s underlying 

unidimensional latent trait 𝜃𝜃 to a dichotomous item i (𝑥𝑥 ∈ {0, 1}) with difficulty parameter 𝛿𝛿𝑖𝑖 is 

specified as follows. 

 𝑠𝑠𝑖𝑖(𝑥𝑥 = 1|𝜃𝜃, 𝛿𝛿𝑖𝑖) =
𝑒𝑒𝑥𝑥𝑠𝑠 (𝜃𝜃 − 𝛿𝛿𝑖𝑖)

1 + 𝑒𝑒𝑥𝑥𝑠𝑠 (𝜃𝜃 − 𝛿𝛿𝑖𝑖)
 (2.8) 

Depending on the application context, such as instrument characteristics and model-data 

fit considerations (de Ayala, 2009), extended IRT models that involve other item parameters 

(e.g., discrimination, lower-asymptote, and/or upper- asymptote) can be used. In the two-

parameter logistic (2PL) model (Birnbaum, 1968), the conditional probability of a correct 

response to a dichotomous item with difficulty parameter 𝛿𝛿𝑖𝑖 and discrimination parameter 𝛼𝛼𝑖𝑖 is 

defined as follows. 

 𝑠𝑠𝑖𝑖(𝑥𝑥 = 1|𝜃𝜃,𝛼𝛼𝑖𝑖, 𝛿𝛿𝑖𝑖) =
𝑒𝑒𝑥𝑥𝑠𝑠 [𝛼𝛼𝑖𝑖(𝜃𝜃 − 𝛿𝛿𝑖𝑖)]

1 + 𝑒𝑒𝑥𝑥𝑠𝑠 [𝛼𝛼𝑖𝑖(𝜃𝜃 − 𝛿𝛿𝑖𝑖)]
 (2.9) 
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For polytomous items, models have been generalized depending on whether item 

response options are assumed to be ordered or unordered using ordinal/nominal logistic 

regression models (de Ayala, 2009). Common models that can be employed for polytomous 

responses are Partial Credit Model (PCM; Masters, 1982), Rating Scale Model (RSM; Andrich, 

1978), Generalized Partial Credit Model (GPCM; Muraki, 1997), Graded Response Model 

(GRM; Samejima, 1997), and Nominal Response Model (NRM; Bock, 1972). For example, 

GPCM is simply an extension to the 2PL IRT model for polytomous items (𝑥𝑥 ∈ {0, … ,𝑚𝑚𝑖𝑖}) and 

probability of selecting 𝑘𝑘𝑏𝑏ℎ category over the previous category is defined as follows. 

 𝑠𝑠𝑖𝑖(𝑥𝑥 = 𝑘𝑘|𝜃𝜃,𝛼𝛼𝑖𝑖, 𝛿𝛿𝑖𝑖𝑖𝑖) =
𝑒𝑒𝑥𝑥𝑠𝑠 [∑ 𝛼𝛼𝑖𝑖(𝜃𝜃 − 𝛿𝛿𝑖𝑖ℎ)𝑖𝑖

ℎ=1 ]
1 + ∑ 𝑒𝑒𝑥𝑥𝑠𝑠 [∑ 𝛼𝛼𝑖𝑖(𝜃𝜃 − 𝛿𝛿𝑖𝑖ℎ)𝑦𝑦

ℎ=1 ]𝑚𝑚𝑖𝑖
𝑦𝑦=1

 , (2.10) 

where 𝛿𝛿𝑖𝑖ℎ is the difficulty parameter of the transition from the (ℎ − 1)th category to ℎ𝑏𝑏ℎ category 

and 𝑚𝑚𝑖𝑖 is the total number of categories. The GPCM is flexible because it can be applied to both 

dichotomous and polytomous data with varying numbers of categories. 

Although these models are based on the assumption that the underlying latent trait is 

unidimensional, this may not be the reality in some situations. For instance, it would be 

unrealistic to expect a student to perform well in a science test without being proficient in 

reading. In other words, students’ answers to a science problem in a test presumably depend on 

their proficiency both in science and in reading. For situations in which it is hypothesized that 

there is more than one underlying latent trait that influences respondents’ answers to the items, a 

multidimensional IRT (MIRT) model would be more suitable (de Ayala, 2009). Similar to the 

case with unidimensional IRT models, various MIRT models have been developed with certain 

specifications in the estimation procedures (de Ayala, 2009; Reckase, 1997; van der Linden, 
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2016). MIRT models also allow investigating the correlations among multiple latent traits by 

taking the measurement error in the response data into account (Reckase, 2009).  

As the person ability estimate 𝜃𝜃 is extended to incorporate multiple dimensions, a 

reparametrization of the model definition is helpful. With multiple dimensions, 𝜃𝜃 as well as the 

item discrimination parameter 𝛼𝛼 are no longer scalars but vectors, which does not allow the 

subtraction of 𝜃𝜃 from the scalar location parameters as defined in the component 𝛼𝛼𝑖𝑖(𝜃𝜃 − 𝛿𝛿𝑖𝑖). 

Therefore, a reparametrization as 𝛼𝛼𝑖𝑖𝜃𝜃 − 𝛼𝛼𝑖𝑖𝛿𝛿𝑖𝑖, in which the interaction term −𝛼𝛼𝑖𝑖𝛿𝛿𝑖𝑖 is a scalar, 

allows for convenience in the definition (Reckase, 2009). The interaction term is usually called 

the intercept parameter (𝛽𝛽𝑖𝑖)  and the reparameterized version of the model is usually called “the 

slope/intercept form”. As an example, a multidimensional extension of the GPCM in the 

slope/intercept form is written as follows. Note that the sign of the intercept is reversed. 

 𝑠𝑠𝑖𝑖�𝑥𝑥 = 𝑘𝑘��⃗�𝜃,𝛼𝛼𝚤𝚤���⃗ ,𝛽𝛽𝑖𝑖𝑖𝑖� =
𝑒𝑒𝑥𝑥𝑠𝑠 [𝑘𝑘𝛼𝛼𝚤𝚤���⃗ �⃗�𝜃 − ∑ 𝛽𝛽𝑖𝑖ℎ𝑖𝑖

ℎ=1 ]
1 + ∑ 𝑒𝑒𝑥𝑥𝑠𝑠 [𝑦𝑦𝛼𝛼𝚤𝚤���⃗ �⃗�𝜃 − ∑ 𝛽𝛽𝑖𝑖ℎ

𝑦𝑦
ℎ=1 ]𝑚𝑚𝑖𝑖

𝑦𝑦=1

 (2.11) 

Many of the MIRT models including the multidimensional extension of GPCM presented 

above are compensatory models because a low ability on one dimension does not necessarily 

imply a low probability of correct response (Reckase, 2009). That is, a low ability on one 

dimension can be compensated by the ability on the other dimensions and the individual can still 

respond to the item correctly. Non-compensatory models, on the other hand, require a certain 

level of ability on all dimensions. Estimates of the parameters of non-compensatory models are 

likely to be unstable due to this dependency on adjacent latent traits (Chalmers et al., 2016).  
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Structural Equation Modeling 

Often, modeling measurement of the latent variables is in itself the main interest 

especially when a new scale is being developed. More often, the relationships among latent 

variables are of importance particularly in studies exploring causality. In the 1920s, Sewall 

Wright took the first step towards modeling structural dependencies among a set of variables 

with his work on path analysis (Matsueda, 2011; Schumacker & Lomax, 2016). In path analysis, 

direct and indirect relationships between independent variables (labelled ‘exogenous’ in this 

framework) and the dependent variables (named ‘endogenous’ in this framework) can be 

explored as shown in the example below.  

 

Figure 2.1. A simple path analysis example 
 

The path diagram above demonstrates structural relationships among one exogenous 

variable Ex1 and two endogenous variables En1 and En2. The parameters 𝛾𝛾1 and 𝛾𝛾2 represent the 

regression coefficients predicting the two endogenous variables with the exogenous variable, and 

𝛽𝛽1 is the regression coefficient representing the relationship between the two endogenous 

variables in this model. Note that, 𝛽𝛽1 represents both the direct effect of En1 on En2 and the 

indirect effect of Ex1 on En2 through En1. Although the term ‘in/direct effect’ is used in the SEM 
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framework to distinguish separate dependencies among variables, it does not necessarily indicate 

causal relationships but correlational relationships. The parameters 𝜁𝜁1 and 𝜁𝜁2 represent the errors 

in each dependent variable.  

It may be helpful to consider path analysis as a single-indicator model in which each 

latent variable is measured by only one observed (also called ‘manifest’) variable. When there 

are many manifest variables measuring latent variables in a model, measurement models can be 

added to the model and both the latent variables and the structural relationships among them can 

be examined simultaneously within the same modeling framework. This framework is termed 

Structural Equation Modeling (SEM). In the SEM framework, the measurement part of the 

model (i.e., Confirmatory Factor Analysis; CFA) is usually defined by using linear links between 

observed variables and underlying latent variables, while the structural part allows for estimating 

the relationships between latent variables. CFA was fully developed by Karl Jöreskog in the 

1960s (Schumacker & Lomax, 2016). The combination of CFA and path analysis into a single, 

coherent framework (i.e., SEM) was based on the work of Jöreskog (1973), Keesling (1972), and 

Wiley (1973). Although there are certain differences between a CFA model and an IRT model 

(Reise et al., 1993), a specific form of IRT model is obtained when link function that connects 

the expected value of the latent variable with the manifest variables in a linear manner is the logit 

link (Rabe-Hesketh, Skrondal, & Pickles, 2004). 

For example, building on the path analysis example given previously (Figure 2.1), 

manifest variables measuring independent and dependent variables can be added to the model as 

shown in Figure 2.2. In this example, there are 11 manifest and 3 latent variables in the model. 

Although there are a total of 31 parameters to be estimated in this model, there are many other 

parameters that could have been included. For example, the error terms that are attached to the 



30 
 

observed variables x1, x2, and x3 could have been allowed to be correlated. In practical 

applications, model specifications should be made as the model is defined and modified based on 

underlying hypotheses and model-data fit. The structural part framed in the center of the path 

diagram is the same as the previous path analysis example (Figure 2.1) and it is combined with 

measurement models for the three latent variables in the SEM example. The links 1 through 8 

represent the factor loadings. Although it is not mandatory, the first manifest variable linked to 

each latent variable is fixed in this specified model and, hence, not estimated. Error terms are 

attached to each manifest variable, shown with arrows numbered 18 through 28, and can be 

allowed to be correlated as shown with springs numbered 12 through 17.  

 

Figure 2.2. A full SEM example 
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Mixture Item Response Theory Models 

In estimating the parameters of standard IRT models, it is assumed that all the individuals 

in the sample belong to one population; that is, the same item parameters apply to all the 

respondents. This assumption can be challenged under certain conditions. For instance, there 

may well be consistent variations in the responses across subgroups of students who solve 

problems employing different strategies and cognitive processes in a particular testing setting. In 

order to properly take into account such subgroups within a population, a new line of research 

that combines Latent Class Analysis (LCA) with IRT models arose towards the end of 1980s 

(Rost, 1990).  

In classical Latent Class Analysis (LCA), it is assumed that the underlying latent trait has 

a discrete distribution and not a continuous distribution as in the IRT framework. Therefore, 

individuals’ responses are modeled with a discrete latent variable (i.e., latent class variable) that 

is represented by the absence or presence of each of a set of skills or traits, based on their 

(unobserved) membership in one class of a family of mutually exclusive classes (Lazarsfeld & 

Henry, 1968; von Davier, 2009). Even though LCA does not assume an ordering of the latent 

classes, located latent class models can be used when it is assumed that the underlying latent trait 

comprises an ordered set of distinct classes each with a fixed latent ability level (von Davier, 

2009; von Davier & Yamamoto, 2004). This definition of the ordered latent classes is somewhat 

similar to the definition of latent traits in the IRT framework as a monotonic increase along the 

ability levels is assumed in both approaches (von Davier, 2009; von Davier & Yamamoto, 2004). 

The first examples of models incorporating LCA into IRT combined the Rasch model 

with LCA by employing mixture distributions (Mislevy & Verhelst, 1990; Rost, 1990). Mixture 

distributions allow responses of the individuals from different unknown subpopulations to be 
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modelled by different item parameter sets (von Davier, 2009; von Davier & Yamamoto, 2004). 

In the Mixed Rasch Model (Rost, 1990; von Davier & Rost, 2016), the latent structure is defined 

by a continuous latent variable 𝜃𝜃 which represents the individual’s underlying latent trait and a 

discrete latent variable g which represents the individual’s underlying latent class. In comparison 

to standard Rasch model, item difficulty parameter (𝛿𝛿) is specific to each latent class (𝑔𝑔) in the 

mixture-distribution Rasch model and the conditional probability of a correct response to a 

dichotomous item given the individual’s underlying continuous latent trait 𝜃𝜃 and latent class g is 

written as follows. 

 𝑃𝑃𝑖𝑖(𝑥𝑥𝑖𝑖 = 1|𝜃𝜃,𝑔𝑔) = �𝜋𝜋𝑔𝑔
𝑒𝑒𝑥𝑥𝑠𝑠 �𝜃𝜃 − 𝛿𝛿𝑖𝑖𝑔𝑔�

1 + 𝑒𝑒𝑥𝑥𝑠𝑠 �𝜃𝜃 − 𝛿𝛿𝑖𝑖𝑔𝑔�
 ,

𝑔𝑔

 (2.12) 

where 𝜋𝜋𝑔𝑔 is the proportion of the latent class within the population (also called mixing 

proportion or class size). 

Note that the underlying latent class variable is unknown in mixture-distribution IRT 

(MixIRT) models in contrast to multi-group IRT models in which the grouping variable is 

observed (von Davier & Rost, 2007). That is, MixIRT models recognize and account for groups 

of individuals with systematically different item responses within a population although it is 

unknown to which group an individual belongs to and what exactly leads to those systematically 

different responses. Mixture models split individuals into latent classes based on maximizing 

within-class homogeneity. This approach has been shown to be helpful in many settings ranging 

from identifying personality styles to differential item functioning (DIF) (Sen & Cohen, 2019). 

Mixed Rasch Models have also been extended to incorporate polytomous item responses (Rost & 

von Davier, 1995a) and the GPCM has been extended with mixture distributions (von Davier & 

Yamamoto, 2004).  
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Similar to the standard IRT framework, multidimensionality has been considered in the 

MixIRT framework. It has been shown that multidimensionality can affect the number of latent 

classes extracted from Mixed Rasch Models and the resulting latent classes can be misleading if 

multidimensionality is not accounted for (Jang et al., 2018). There have been many studies 

exploring multidimensional extensions of MixIRT models for different purposes. For instance, 

De Boeck et al. (2011) employed MixIRT models with a secondary dimension to explain DIF 

between latent classes. Rost and von Davier (1995b) employed MixIRT models to test the 

dimensionality of the latent traits. Recently, Jeon (2019) proposed a multidimensional extension 

to confirmatory MixIRT models in which prior knowledge of the items parameters and the 

number of latent classes are assumed. 

Furthermore, von Davier (2007) proposed a general multidimensional mixture IRT model 

by utilizing mixture distributions within a diagnostic modeling framework. Diagnostic modeling 

has been a rapidly developing research area (von Davier, DiBello, & Yamamoto, 2006). Similar 

to LCA, diagnostic models employ discrete latent traits; however, individuals’ behaviors are 

described in terms of multiple discrete latent abilities instead of one single discrete latent ability. 

In a sense, diagnostic models can be considered as multiple classification located (or ordered) 

latent class models with the restriction on the number of possible latent classes (Maris, 1999; 

Rupp et al., 2010; von Davier, 2009). Moreover, diagnostic models are IRT-based logistic 

regression models and, since they are by definition multidimensional (Rupp et al., 2010), they 

can also be considered as multidimensional discrete IRT models (von Davier, 2009) as the 

individual’s latent trait is defined by a discrete latent variable.  

von Davier proposed the General Diagnostic Model (GDM; von Davier, 2005a) that 

unifies many of the diagnostic modeling approaches as well as some common IRT models as 
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special cases within the same framework. GDM uses a logistic model as do many other 

psychometric models for modeling the non-linear relationship of an unobserved latent variable to 

the probability of a correct response to an item. von Davier (2007) also demonstrated in his work 

that mixture-distribution multidimensional IRT models can be developed in this unified 

framework. Mixture GDM (MGDM) extends GDM by employing mixture distributions and, 

hence, offers a unique way to incorporate both multidimensionality and mixture distributions 

into the IRT modeling framework. In comparison to the mixture Rasch model where the latent 

structure is defined by a combination of one discrete latent class variable and one continuous 

latent trait, MGDM employs a latent class variable and multiple discrete latent variables 

representing individuals’ underlying latent traits for multiple dimensions. Within this structure, 

when the underlying latent trait is assumed to be continuous instead of discrete, a general 

multidimensional mixture IRT model can be developed (von Davier, 2007). As a 

multidimensional IRT-based model, MGDM is a compensatory model, so that a low value on 

one dimension does not necessarily imply a low probability of a correct response. Deriving from 

multidimensional GPCM (Equation 2.11), the conditional probability of 𝑘𝑘𝑏𝑏ℎ category over the 

previous category in a polytomous item (𝑥𝑥 ∈ {0, … ,𝑚𝑚𝑖𝑖}) given the individual’s underlying latent 

trait on d dimensions (�⃗�𝜃 = (𝜃𝜃1 …𝜃𝜃𝑑𝑑)) and underlying latent class (g) can be defined as shown 

below. 

 
𝑠𝑠𝑖𝑖�𝑥𝑥 = 𝑘𝑘��⃗�𝜃,𝛼𝛼𝚤𝚤���⃗ ,𝛽𝛽𝑖𝑖𝑖𝑖,𝑔𝑔� =

𝑒𝑒𝑥𝑥𝑠𝑠 [𝑘𝑘𝛼𝛼𝚤𝚤𝑔𝑔������⃗ 𝑞𝑞𝚤𝚤���⃗ �⃗�𝜃 − ∑ 𝛽𝛽𝑖𝑖ℎ𝑔𝑔𝑖𝑖
ℎ=1 ]

1 + ∑ 𝑒𝑒𝑥𝑥𝑠𝑠 [𝑦𝑦𝛼𝛼𝚤𝚤𝑔𝑔������⃗ 𝑞𝑞𝚤𝚤���⃗ �⃗�𝜃 − ∑ 𝛽𝛽𝑖𝑖ℎ𝑔𝑔
𝑦𝑦
ℎ=1 ]𝑚𝑚𝑖𝑖

𝑦𝑦=1

 
(2.13) 

where 𝛽𝛽𝑖𝑖ℎ𝑔𝑔 denote class-specific item intercept parameters of the transition from the (ℎ − 1)th 

category to ℎ𝑏𝑏ℎ category of item i in latent class g, 𝛼𝛼𝚤𝚤𝑔𝑔������⃗  (𝛼𝛼𝚤𝚤𝑔𝑔������⃗ = (𝛼𝛼𝑖𝑖1𝑔𝑔 …𝛼𝛼𝑖𝑖𝑑𝑑𝑔𝑔)) denote class-
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specific item slope parameters for d dimensions for item i in latent class g, and 𝑞𝑞𝚤𝚤���⃗   (𝑞𝑞𝚤𝚤���⃗ =

(𝑞𝑞𝑖𝑖1 … 𝑞𝑞𝑖𝑖𝑑𝑑)) denote the binary entries representing whether the item calls on a certain skill, 

namely design matrix or Q-Matrix (Rupp et al., 2010). For example, a total of I items measuring 

a D-dimensional construct would require an IxD matrix with binary entries. 

2.2.3 Multilevel Models 

The modeling approaches discussed in the previous section offer effective strategies to 

minimize inferential biases as much as possible by accounting for the measurement error and 

systemic heterogeneity within the population. In many cases, employing these techniques should 

result in improved parameter estimates. However, with regard to a proper ILSA data analysis, 

these models only treat part of the problem. The complex sampling design used in large-scale 

assessment studies induces a hierarchical data structure, causing certain complications in 

statistical analysis.  

One of the issues with the nested structure of data is that it results in correlated errors in 

regression analyses and leads to a violation of the assumption of independence between 

observations that justifies the use of ordinary least squares (OLS) methods (Fox & Glas, 2001; 

Goldstein & Spiegelhalter, 1996). One consequence is that using OLS-based standard errors in 

this situation (correlated errors) leads to underestimation of the standard errors of the regression 

coefficients. Furthermore, if the nested structure of the data is ignored, then any relationship of 

interest is forced to be represented by one regression line even though there may well be 

differences in regressions across schools or regions. That is, if the fitted regression lines are 

allowed to be free for each school, they are likely to have different intercepts and/or slopes for 

each school. Not accounting for the nested structure of the data may hide the differences in the 

relationships across schools and generate misleading results. Especially in non-experimental 
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studies like ILSAs, it is likely there are confounding variables that can reverse the direction of 

the correlations when the data are aggregated (Cohen, 1986). Correlations seen at the within-

group level can be reversed when the groups are combined and lead to counter-intuitive 

statistical findings (i.e., Simpson’s paradox) (Cohen, 1986; Goltz & Smith, 2010; Simpson, 

1951; Thompson, 2006).  

As the complex sampling strategies are commonly used in many studies, statistical 

models were extended to account for the dependencies among observations. A few of the 

existing modeling techniques are discussed in this section. 

Multilevel Linear Models 

In order to take the clustered nature of the observed data into account, multilevel linear 

modeling (MLM) is the commonly preferred statistical method. A MLM is an extension of 

standard multiple regression accounting for dependency in the data due to clustering (Ravand, 

2015). MLMs allow separate models for each level in the data (e.g., school- and student-level) 

and the residuals are separately examined in this structure (Aitkin & Longford, 1986). Thus, the 

issue that observations within clusters may be more similar than between clusters is properly 

treated. As seen in the null (or unconditional) two-level linear model below, which does not have 

any covariates and is equivalent to the one-way ANOVA with random effects, the residual term 

𝑒𝑒𝑖𝑖 in a simple OLS regression (Equation 2.4) is split into two terms separately estimated at each 

level. 

 Level−1 Model: 𝑌𝑌𝑖𝑖𝑗𝑗 = 𝛽𝛽0𝑗𝑗 + 𝑟𝑟𝑖𝑖𝑗𝑗  (2.14) 

 Level−2 Model: 𝛽𝛽0𝑗𝑗 = 𝛾𝛾00 + 𝑢𝑢0𝑗𝑗  , (2.15) 
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where 𝑟𝑟𝑖𝑖𝑗𝑗 = 𝑁𝑁(0,𝜎𝜎2) and 𝑢𝑢0𝑗𝑗 = 𝑁𝑁(0, 𝜏𝜏). 𝑟𝑟𝑖𝑖𝑗𝑗 is the residual term representing the deviation of 

individual ij’s observed 𝑌𝑌𝑖𝑖𝑗𝑗  from 𝛽𝛽0𝑗𝑗 which is the group mean of the outcome variable in group j, 

and 𝑢𝑢0𝑗𝑗 is the residual term representing the deviation of group j’s mean from 𝛾𝛾00 which is the 

grand mean of the outcome for the population of groups. 

The null model also allows for the calculation of the intra-class correlation (ICC) as well 

as the design effect and the effective sample size as discussed earlier. Estimated individual-level 

variance and group-level variance are used to infer the degree of dependence among the 

observations in terms of the outcome of interest as shown below.  

 𝐼𝐼𝐼𝐼𝐼𝐼 =
𝑉𝑉𝑉𝑉𝑟𝑟𝑖𝑖𝑉𝑉𝑉𝑉𝑉𝑉𝑒𝑒 𝑏𝑏𝑒𝑒𝑏𝑏𝑏𝑏𝑒𝑒𝑒𝑒𝑉𝑉 𝑔𝑔𝑟𝑟𝑜𝑜𝑢𝑢𝑠𝑠𝑠𝑠 (𝜏𝜏)

𝑇𝑇𝑜𝑜𝑏𝑏𝑉𝑉𝑜𝑜 𝑣𝑣𝑉𝑉𝑟𝑟𝑖𝑖𝑉𝑉𝑉𝑉𝑉𝑉𝑒𝑒 (𝜏𝜏 + 𝜎𝜎2)
 (2.16) 

In addition, the relationship between the predictors and the outcome is allowed to vary 

from group to group and this variation among groups can be modelled by using group-level 

variables in a multilevel model. In the example below, which is usually called as “intercepts- and 

slopes-as-outcomes model”, the variation among intercepts, as well as the relationship between 

𝑋𝑋𝑖𝑖𝑗𝑗 and 𝑌𝑌𝑖𝑖𝑗𝑗 from group to group is predicted by a group-level variable 𝑊𝑊𝑗𝑗. 

 Level−1 Model: 𝑌𝑌𝑖𝑖𝑗𝑗 = 𝛽𝛽0𝑗𝑗 + 𝛽𝛽1𝑗𝑗(𝑋𝑋𝑖𝑖𝑗𝑗) + 𝑟𝑟𝑖𝑖𝑗𝑗 (2.17) 

 Level−2 Model: 𝛽𝛽0𝑗𝑗 = 𝛾𝛾00 + 𝛾𝛾01� 𝑊𝑊𝑗𝑗� + 𝑢𝑢0𝑗𝑗  (2.18) 

   𝛽𝛽1𝑗𝑗 = 𝛾𝛾10 + 𝛾𝛾11� 𝑊𝑊𝑗𝑗� + 𝑢𝑢1𝑗𝑗  (2.19) 

Models can easily get very complicated and computationally expensive when many 

components are allowed to vary from group to group and are predicted by certain group-level 

variables. Therefore, depending on the application context, models should be specified carefully. 



38 
 

For instance, even though there is an underlying hypothesis for a variation between groups, 

model estimates and fit should be analyzed to determine whether the observed data support the a 

priori specifications of the model; if not, the model should be re-specified accordingly. However, 

it should be noted that searching through data for the best fitting model leads to the issue of 

selective inference and should be addressed by employing proper statistical procedures 

(Benjamini et al., 2009). 

Although it provides a powerful solution to deal with the problems caused by the 

clustered data, MLMs are still limited because measurement error in the criterion variable or the 

predictors in the model is not treated properly (Adams et al., 1997; Battauz et al., 2011; Fox, 

2007; Fox & Glas, 2001; Fox & Glas, 2003; Pastor, 2003). The effects of measurement error on 

the accuracy of estimates have been widely studied in single-level regression analysis (Carroll et 

al., 2006; Fuller, 1987; Goldstein, 1979) and similar effects were found in multilevel models 

(Woodhouse et al., 1996). 

Multilevel Latent Variable Models 

Multilevel Item Response Theory Models 

In order to take into account both the measurement error and the clustering in the analysis 

of ILSA data, one common and straightforward method is estimating latent variables by 

employing standard IRT models as a separate procedure and using these IRT estimates in a 

multilevel modeling framework (Adams et al., 1997; Kamata, 1998; Pastor, 2003; Schofield, 

2015; Sulis & Toland, 2017). However, a simultaneous estimation procedure, instead of a two-

step approach, has been shown to provide more accurate estimates (Adams et al., 1997; Fox, 

2007; Kamata, 1998). As one of the advantages, the bias that is caused by the two-step approach 

can be eliminated with direct estimation of the population parameters (e.g., the regression 
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coefficient of the student ability score on the predictor) from the item responses (Mislevy, 1984). 

Additionally, the use of student-level predictors in the same model can increase the accuracy of 

both item parameter estimates (Mislevy, 1987) and student ability estimates (Adams et al., 

1997).  

Earlier efforts towards accounting for both measurement error and clustering in a 

simultaneous estimation procedure utilized the standard IRT model as a multilevel model by 

considering the item response model to be a within-student model while allowing item 

parameters to vary across units (Adams et al., 1997). These methods mostly employed the Rasch 

model (Rasch, 1960) and incorporated only varying person ability estimates (i.e., two-level 

formulation). Kamata’s Hierarchical Generalized Linear Model (HGLM) has offered a three-

level extension by which variation among groups can also be estimated (Kamata, 1998). Over the 

years, there have been many different specifications of the multilevel formulation of the IRT 

models for different purposes (Kamata, 2001). For instance, Fox and Glas (2001) carried out 

Bayesian estimation by using Gibbs sampling and extended the multilevel IRT model by 

embedding the two-parameter IRT model into a two-level latent regression model.  

Multilevel IRT (MLIRT) models are advantageous for many reasons when analyzing 

ILSA data. In comparison to multilevel linear models, MLIRT models allow the measurement 

error to be heteroscedastic, as it is defined locally. Therefore, this family of models should 

provide more accurate estimates of the relationships between variables by incorporating the 

errors in the measurement of underlying latent traits into the model, as well as by avoiding 

misleading correlation estimates resulting from ignoring the clustered nature of the data.  

Although they are advantageous, increasing the number of parameters to be estimated, 

along with simultaneous estimation of the parameters for different levels in the model, brings 
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computational challenges. In particular, multidimensional extensions of MLIRT models appear 

to be a challenging, albeit growing, research area due to computational difficulties. For instance, 

Lu and Bolt (2015) emphasized the computational challenges they faced in their study. Instead of 

a simultaneous estimation of a multilevel multidimensional IRT (MLMIRT) model, they 

followed a two-stage approach by, first, fitting a multidimensional IRT model, and then using the 

resulting item parameters to fit a multilevel IRT model using PISA 2006 data. Additionally, they 

used the average of a set of plausible values in their models for simplicity even though it is well-

established in the literature that plausible values are intended to be used as a set (von Davier, 

Gonzalez, & Mislevy, 2009). 

In recent years, an increasing number of software packages that improve the estimation of 

these models have been developed. Specifically, using Markov Chain Monte Carlo (MCMC) 

algorithms have made the estimation of various complex models possible and, as a result, many 

software packages with Bayesian approaches have emerged (Junker et al., 2016; Rue et al., 

2017). A comprehensive review of publicly available software packages for Bayesian multilevel 

modeling can be found in Mai and Zhang’s (2018) paper. According to their paper, WinBUGS 

(Lunn et al., 2000) stands out as the most commonly used software package for Bayesian 

multilevel modeling. Examples of programming MCMC algorithms manually are also found in 

the literature (e.g., De Jong & Steenkamp, 2010) as they may be preferred to gain more 

flexibility to estimate more complex models (Junker et al., 2016). More recently, Zhang et al. 

(2019) proposed a multidimensional extension to Fox and Glas (2001) and Kamata (2001)’s 

MLIRT models to investigate correlations between multiple latent variables and covariates as the 

sources of the between- and within-cluster variations using a serious of BUGS software 
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packages. In contrast to Fox and Glas’ model, their proposed model was developed for 

dichotomous item response data only and has not been extended to polytomous IRT models.  

Although they allow for considerable flexibility in estimating multilevel IRT models, 

Bayesian estimation procedures are known to place great demands on the computer processing 

power and take longer time to run (Mai & Zhang, 2018; Rue et al., 2017). Especially due to the 

use of MCMC algorithms, computing time increases with the model complexity and larger 

sample sizes (Mai & Zhang, 2018). Moreover, when the data is extremely sparse (e.g., cognitive 

data at the item level in ILSAs), Bayesian methods can be very challenging and may not 

converge for complex models (Mun et al., 2019). Bayesian methods also require carefully 

specified priors, which can be difficult for the variance-covariance parameters in mixed models 

(Browne & Draper, 2006; Jeon & Rabe-Hesketh, 2012).  

Due to their practical infeasibility, software packages employing MCMC and Bayesian 

estimation methods are not usually preferred by the users (Junker et al., 2016). Zhang et al. 

(2019) noted that more efficient Bayesian algorithms and easy-to-use software packages are 

needed as the Bayesian estimation method faces real challenges when the number of items or the 

sample size is substantially increased. In order to soften the impact of MCMC algorithms on the 

computing time, MultiBUGS (Goudie et al., 2017) is a recently developed software package that 

builds on the existing algorithms in WinBUGS but runs independent Markov chains in parallel. 

Finally, R-INLA (Rue et al., 2017) employs an algorithm that approximates Bayesian inference 

in a computationally faster way but it is relatively limited in terms of its flexibility in comparison 

to other statistical packages implementing MCMC algorithms (Mai & Zhang, 2018). 
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Multilevel Structural Equation Models 

Dependencies of the observations in the data from a clustered setting were addressed also 

in the SEM framework with different techniques and procedures. Muthén (1994) provided an 

introduction to some techniques, yet limited to a subset of models, for multilevel SEM. Using 

existing software packages that are particularly used for SEM such as LISREL, Muthén (1994) 

demonstrated that separate models for within- and between-group covariance matrices can be 

used to incorporate nested structure of the data. However, several limitations are listed by other 

authors regarding the use of separate models for within- and between-group covariance matrices 

(Rabe-Hesketh, Skrondal, & Pickles, 2004). 

Rabe-Hesketh, Skrondal, and Pickles (2004) proposed a unifying framework that 

combines MLM and SEM, namely Generalized Linear Latent and Mixed Models (GLLAMM). 

In GLLAMM, lower-level latent variables are allowed to be regressed on latent and observed 

variables at the same or higher-levels. GLLAMM provides flexibility to model both dichotomous 

and polytomous response types. An example path diagram of a multilevel SEM model with a 

latent dependent variable and a latent covariate at level 2 can be seen in Figure 2.3.  
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Figure 2.3. A Multilevel SEM example (Rabe-Hesketh, Skrondal, & Zheng, 2012) 
 

Computational challenges similar to estimating multilevel IRT models are seen in the 

multilevel SEM literature. The authors of the GLLAMM framework (Rabe-Hesketh, Skrondal, & 

Pickles, 2004) developed a maximum likelihood approach to estimate the models and this 

procedure is implemented in the gllamm software package which is available in the statistical 

software program Stata (StataCorp, 2019). Jeon and Rabe-Hesketh (2012) improved this 

estimation procedure further by proposing a profile-likelihood approach for estimating complex 

models with maximum likelihood. This approach overcomes some of the limitations in existing 

software packages including gllamm which cannot fit models with crossed random effects. The 

profile-likelihood method was implemented by using the lme4 package (Bates et al., 2015) in R 

(R Core Team, 2019). This procedure employs a Laplace approximation similar to the R-INLA 

package and, hence, is computationally faster. However, it may still require a very long runtime– 

depending on the research question and its complexity. For instance, the computation time for 

the model that was given by the authors as an example of the profile-likelihood method was 

about 3 days (Jeon & Rabe-Hesketh, 2012). 



44 
 

Furthermore, Muthén and Asparouhov (2016) proposed a series of multilevel SEMs with 

multidimensional extensions. They implemented both Weighted Least-Squares and Bayesian 

estimation methods in the Mplus software program (Muthén & Muthén, 2012) which is 

commonly used for SEMs and offers mixture modeling as well. A similar model, namely Mixed 

Effects Structural Equations (MESE) which combines SEM and IRT was developed by Schofield 

(2015). In particular to the MESE model, a prior for the criterion variable can be defined based 

on the other covariates in the structural model. It employs an MCMC algorithm and WinBUGS 

can be used to estimate MESE models (Schofield, 2015; Schofield et al., 2015). In the MESE 

framework, a variety of models are covered such as factor analysis, multidimensional IRT, and 

cognitive diagnostic modeling. 

Multilevel Mixture Item Response Theory Models 

Mixture IRT models have also been extended to multilevel models to account for the 

clustered nature of the data. It has been shown that multilevel mixture IRT models (MLMixIRT) 

can be obtained by a variety of ways; incorporating mixture distributions into multilevel IRT, 

extending mixture IRT models to a multilevel structure, and combining IRT into multilevel latent 

class models (Cho, 2007). Among these, multilevel extensions of mixture IRT models appear to 

be more common in the literature (e.g., Cho & Cohen, 2010; Finch & Finch, 2013; Gnaldi et al., 

2016). Vermunt (2003; 2004) extended multilevel LCA and mixture models to multilevel 

settings by employing Maximum Likelihood (ML) estimation and expectation-maximization 

(EM) algorithm. He then implemented this approach (2008) in Latent GOLD software (Vermunt 

& Magidson, 2005) and noted that this model can also be implemented with a Bayesian MCMC 

algorithm using WinBUGS software. However, he pointed out the challenges similar to those 

were discussed in regards to Bayesian MLIRT models.  
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In order to incorporate multidimensionality within the MLMixIRT framework, De Jong 

and Steenkamp (2010) expanded their previous work on the DIF analysis (De Jong et al., 2007) 

which was based on Fox and Glas’ (2001) MLIRT model employing Bayesian estimation. They 

implemented this method with an MCMC algorithm that they programmed manually and a 

relatively complex model with 50,000 iterations took about 24 hours. In a similar study (Finch & 

Finch, 2013), a multilevel multidimensional extension of the Mixed Rasch model was 

implemented with ML estimation using Mplus (Muthén & Muthén, 2012). 

Building on Vermunt’s work (2003; 2004), von Davier (2010) developed a multilevel 

extension to the MGDM (von Davier, 2007), namely Hierarchical Mixture General Diagnostic 

Models (HMGDM). HMGDM takes into account the clustering that is induced by the survey 

design. That is, in addition to the underlying latent class indicator, HMGDM introduces an 

observed clustering variable (s) representing sampling units in a study such as schools or 

classrooms. As mentioned earlier in this paper, although GDM is developed within the 

diagnostic modeling framework and assumes multiple discrete latent variables representing 

individual’s underlying latent traits for multiple dimensions, the HMGDM can also be extended 

to multilevel multidimensional mixture IRT (MLMixMIRT) model when the underlying latent 

traits for multiple dimensions are assumed to be continuous instead of discrete. If it is assumed 

that individuals’ observed responses to the items depend on their underlying latent classes (g) 

and their underlying latent traits only (�⃗�𝜃), then the probability of an observed response vector can 

be defined as, 

 𝑃𝑃(�⃗�𝑥) = �𝑃𝑃(𝑔𝑔)
𝑔𝑔

�𝑃𝑃��⃗�𝜃|𝑔𝑔�
𝜃𝜃��⃗

𝑃𝑃��⃗�𝑥|�⃗�𝜃,𝑔𝑔� , (2.20) 
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where the marginal probability of the latent class variable is defined as 

 𝑃𝑃(𝑔𝑔) = �𝑃𝑃(𝑠𝑠)
𝑠𝑠

�𝑃𝑃(𝑔𝑔|𝑠𝑠)
𝑔𝑔

 . (2.21) 

Note that the observed clustering indicator does not depend on the individual’s 

underlying latent class. However, the latent class variable does depend on the clustering variable 

in this framework and this can be seen as adding complexity to the model (von Davier, 2010). In 

the case where a separate latent class distribution is assumed for each cluster, this would 

substantially increase the number of parameters to be estimated. That said, in many contexts 

including educational settings, it is more reasonable and feasible to assume that item parameters 

do not differ from cluster to cluster (von Davier, 2010).  

HMGDM was implemented in the mdltm software package developed by von Davier 

(2005b). mdltm employs marginal maximum likelihood (MML) estimation and expectation-

maximization (EM) algorithm to estimate mixture-distribution IRT models. EM algorithm is 

commonly preferred for mixture IRT models due to its flexibility with incomplete data (von 

Davier & Rost, 2016). It enables fitting a wide range of models including multidimensional IRT, 

mixture-distribution IRT, multilevel mixture-distribution IRT, and multilevel multidimensional 

mixture IRT models. It is suitable for large-scale data analyses and can handle sparse data with 

dichotomous and polytomous responses. A comparison of mdltm and other software packages 

that are used for similar diagnostic models can be found in Sen and Terzi’s paper (2019). 

It is expected that the choice of software package is critical in this study due to the 

computational challenges when estimating the very many parameters of multilevel 

multidimensional IRT models. Because of its flexibility in handling large and sparse data along 
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with modelling complex multilevel multidimensional IRT models, mdltm is used in this study to 

fit multidimensional IRT and multilevel multidimensional mixture IRT models. Similar studies 

conducted by the Educational Testing Service for PISA data analyses (von Davier, Yamamoto, et 

al., 2019) supports this choice. Mixture IRT models account for underlying subpopulations that 

are neither directly observed nor captured in the item response data. Therefore, by using 

multilevel multidimensional mixture IRT models, within-country heterogeneities in students’ 

performances that might result from factors such as varying response styles can also be examined 

for the purposes of this study.  

2.3 Relationship in Focus: Math Self-efficacy and Math Achievement 

To illustrate and ameliorate the impact of both clustering and measurement error on the 

correlations reported between background data and proficiency measures in ILSAs, this 

dissertation offers a comprehensive investigation of the operating characteristics of competing 

modeling techniques. To this end, the Programme for International Student Assessment (PISA) 

2012 database is utilized and the analyses focus on the relationship between PISA math 

achievement and math self-efficacy.  

The PISA 2012 Assessment 

PISA is a cross-sectional study conducted every three years under the auspices of the 

Organisation for Economic Co-operation and Development (OECD), with the aim of collecting 

internationally comparable information about 15-year-old students in participating countries or 

jurisdictions. Both member and non-member countries participate in PISA and the number of 

participating countries continues to increase since its first administration in 2000 in 32 countries. 

There were 79 participating countries and economies in the seventh cycle of PISA in 2018 
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(OECD, 2019b). PISA is designed to monitor educational outcomes and its emphasis is on 

knowledge and skills that are considered fundamental for students’ adult life (OECD, 2017). 

Reading, mathematics, and science have been the major content domains in PISA, although the 

PISA’s scope has expanded over time. For instance, financial literacy was offered as an optional 

assessment for the first time in PISA 2012. In PISA 2018, many other optional questionnaires 

were offered including global competence, well-being, educational trajectory, and familiarity 

with information and communications technology (OECD, 2019a). This study employs data 

from the fifth cycle of the PISA administered in 2012. Although this was not the most recent data 

available in the PISA international database by the time this study was proposed, it was the last 

cycle in which math was the major domain. 

In PISA 2012, 34 OECD countries and 31 partner countries/economies participated and 

these are referred to as “countries” throughout this study. PISA follows an age-based sampling 

strategy and targets 15-year-old students enrolled in both school-based and work-based 

educational programs. In order to ensure the representativeness of the samples and comparability 

of the information at the country level, between 4,500 and 10,000 students from at least 150 

schools are typically tested in each country. Although target cluster size is set to be 35 students 

within each sampled school, this may vary in some countries (OECD, 2014). A two-stage 

stratified sampling design was used in all participating countries except the Russian Federation. 

Eligible schools with 15-year-old students were systematically sampled from a comprehensive 

national sampling frame in the first stage by assigning a higher probability of being selected to 

schools with larger numbers of eligible students (i.e., Probability Proportional to Size (PPS) 

sampling). In the second stage, students were selected from a list of all eligible students within 

the sampled schools. In the Russian Federation, three-stage sampling was used with the added 
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sampling stage of geographical areas prior to sampling of schools and students (OECD, 2014). 

Targeted and achieved response rates by country are reported in the PISA 2012 Technical Report 

(2014).  

Math Assessment 

In PISA 2012, the major domain was mathematics literacy to which two-thirds of the 

two-hour testing time was allocated (OECD, 2014). Although math literacy is a part of the 

assessment framework in every cycle of PISA, a new formal definition was developed for PISA 

2012, as math was the major domain. Math literacy was defined in PISA 2012 Assessment and 

Analytical Framework (OECD, 2013a) as follows: 

“Mathematical literacy is an individual’s capacity to formulate, employ, and interpret 

mathematics in a variety of contexts. It includes reasoning mathematically and using 

mathematical concepts, procedures, facts and tools to describe, explain and predict 

phenomena. It assists individuals to recognize the role that mathematics plays in the 

world and to make the well-founded judgments and decisions needed by constructive, 

engaged and reflective citizens” (p. 25). 

As seen from the depth of the construct definition, it is an ambitious goal to accurately 

assess students’ math literacy in full. In addition, PISA is a low-stakes assessment for students 

and this potentially reduces students’ engagement with the test and consequently may undermine 

the quality of information gathered (Akyol et al., 2018; Ulitzsch et al., 2019). In order to achieve 

necessary construct representation while keeping the testing time short enough to reduce the 

burden on students, PISA uses a matrix-sampling design by which each student is administered 

only a subset of the total available items (Gonzalez & Rutkowski, 2009). With a balanced 

incomplete block design, seven item blocks for the major domain, and three item blocks each for 
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minor domains, were developed for the assessment of reading, math, and science in PISA 2012 

and these were systematically rotated to form two-hour (four item blocks) standard test booklets. 

Three of the seven item blocks measuring math proficiency were the same blocks that were 

administered in the previous PISA cycle in 2009. In total, there were 109 items measuring math 

proficiency; 11 of them were partial credit (i.e., complex multiple choice or constructed-response 

items) and 98 of them were dichotomous (i.e., multiple choice or dichotomously scored 

constructed-response items). Each booklet had at least one math item block so each student was 

administered at least 30 minutes of math testing. Similar to other ILSA designs, five plausible 

values are provided in PISA 2012 dataset as the individual-level math performance values and 

these are incorporated into the analyses conducted in this study. 

Math Self-efficacy 

With math being the major domain, the PISA 2012 student background questionnaire 

contained attitudinal measures particularly related to math literacy. This study’s main focus is on 

the relationship between students’ math self-efficacy and math performance. The literature 

suggests that domain-specific self-efficacy measures, such as math self-efficacy, are more 

closely related than generalized measures of efficacy to the criterion reference of performance 

and students’ responses are less likely to be influenced by frame of reference effects (Marsh, 

Pekrun, et al., 2019; Marsh, Roche, et al., 1997; Meece et al., 1990). In support of this argument, 

studies found that math self-efficacy is positively related to math performance both at the within- 

and between-country levels (Lee, 2009). Therefore, it was hypothesized that the attitude-

achievement paradox would not occur when the data were aggregated to the country level and 

this was considered to provide a more solid ground for this study. In addition, there has been an 

ongoing debate on inaccuracies observed when one assesses their own performance. In 
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particular, previous studies suggest that low performers are not good at assessing their own 

knowledge and skills due to lack of metacognitive competence (Dunning, 2011; Kruger & 

Dunning, 1999). On the other hand, there have been critiques of this claim, arguing that these 

findings may result from statistical or methodological artefacts such as measurement error 

(Ehrlinger et al., 2008; Krueger & Mueller, 2002). Because this study investigates the impact of 

measurement error and clustering on correlations reported between background data and 

proficiency scales in ILSAs, the relationship between math self-efficacy and math achievement 

was chosen to be the focus of this study -- with the hope of informing this discussion. 

Self-efficacy is defined in literature as one’s belief in regard to their ability to 

successfully accomplish desired outcomes (Bandura, 1977). It has been a focus of interest in 

many educational achievement studies as a strong predictor of students’ academic performance 

(Hackett & Betz, 1989; Pajares & Miller, 1994; Schunk, 1989). PISA’s math self-efficacy 

measure was developed and used for the first time in its 2003 administration and the same 

measure was again used in PISA 2012 after re-evaluation of its psychometric qualities (OECD, 

2014). The scale contains eight mathematical tasks for which students are asked how confident 

they feel in solving them. Students’ confidence levels are evaluated by using a four-point Likert 

scale response format, ranging from “very confident” to “not at all confident”.  

As an indicator for internal consistency of the scale, Cronbach’s alpha values were 

documented for the math self-efficacy scale in the PISA 2012 Technical Report and the values 

demonstrated only minor variation across participating countries, ranging from 0.78 to 0.91 with 

a median of 0.83 (OECD, 2014). In addition, international item parameters (difficulty and 

category thresholds) were documented in the PISA technical reports. However, as also noted by 

others previously (Pepper, 2020), the item threshold parameters were not presented in full for all 
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three categories for the items in the PISA 2012 Technical Report. It is well-documented by 

OECD that the development of the scales used in PISA is supported in various ways such as 

conducting field studies and evaluating the psychometric quality by using proper statistical 

modeling approaches. Nonetheless, results from these studies were not published. For example, 

there is no documentation of item-fit statistics or information on differential item functioning 

across countries. In their comprehensive evaluation of the validity argument for the math self-

efficacy scale used in PISA, Pepper (2020) argues that the degree of lack of publicly available 

validity evidence for PISA’s math self-efficacy scale is concerning and demands attention. In the 

PISA 2022 Context Questionnaire Framework (“Field Trial Version”, (OECD, 2019c)), it has 

been announced that the PISA 2012 math self-efficacy scale will be retained but expanded. That 

said, concerns raised regarding the validity of the current version of the scale are not mentioned.  

Domain-specific Self-related Constructs 

For the fifth research question of this study, a composite measure that combines math 

self-efficacy, math anxiety, and math self-concept is used as the background measure to examine 

if the accuracy of the correlation estimates can be improved by combining multiple background 

measures. Among various background variables measured in PISA 2012, these background 

measures were selected because it has been well-established in the literature that they are closely 

related constructs (Lee, 2009; Morony et al., 2013).  

Indeed, it has been debated that self-concept and self-efficacy, often referred as “self-

beliefs”, have much in common and, thus, are mistakenly confused constructs in terms of their 

definition and measurement (Marsh, Pekrun, et al., 2019). Researchers suggest that self-efficacy 

is more descriptive of one’s future success whereas self-concept is how one thinks of their 

capabilities with respect to others and it is more global (Marsh, Pekrun, et al., 2019; Pajares & 
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Miller, 1994). Therefore, domain-specific measures of self-concept such as math self-concept are 

claimed to be more useful to predict future performance. On the other hand, due to its sensitivity 

to frame of reference effects, it has been shown that the relationship between math self-concept 

and math achievement could be influenced by the attitude-achievement paradox (Lee, 2009; 

Marsh, Pekrun, et al., 2019; OECD, 2019c). In the PISA 2012 Assessment and Analytical 

Framework (OECD, 2013a), self-concept was defined as “the overall perception of one’s 

personal attributes based on continuous self-evaluation” (p. 185).  

Math anxiety is commonly discussed along with math self-efficacy and math self-concept 

due to its close relationship to these constructs, as well as one’s math performance. Although no 

clear definition for math anxiety is made in the documentation provided for the PISA 2012 

administration, it is described as “feelings of helplessness and emotional stress when dealing 

with mathematics” in the PISA 2003 Technical Report (OECD, 2005, p. 291). In the same report, 

it is also noted that math anxiety is found to be negatively correlated with math achievement but 

its effect could be indirect when math self-efficacy and math self-concept are taken into account 

(Ma, 1999; Meece et al., 1990). In particular, it is argued in the literature that higher levels of 

anxiety are associated with lower levels of self-efficacy (Bandura, 1997). 

Similar to the math self-efficacy scale, the math self-concept and math anxiety scales 

were first developed and used in PISA 2003, and the same measures were again used in PISA 

2012 after re-evaluation of their psychometric qualities (OECD, 2014). Each measure included 

five items with four-point Likert scale response formats, ranging from “strongly agree” to 

“strongly disagree”. Based on the PISA 2012 documentation, the variation in the internal 

consistencies of the math self-concept and math anxiety scales across participating countries 

were larger than those for math self-efficacy. For the math self-concept scale, Cronbach’s alpha 
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values ranged from 0.70 to 0.92, with a median of 0.88. The math anxiety scale typically 

exhibited smaller Cronbach’s alpha values, ranging from 0.51 to 0.88 with a median of 0.82. 

International item parameters (difficulty and category thresholds) were documented in the PISA 

technical reports. However, as for the math self-efficacy scale, the item threshold parameters 

were not presented in full for all three categories for the items in the PISA 2012 Technical 

Report. There was neither documentation of item-fit statistics nor information on differential 

item functioning across countries provided.  
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Chapter 3: Methodology 

3.1 Data 

For this study, cognitive-, student-, and school-level data files contained in the PISA 

2012 international database (OECD, 2020) were employed. Even though computer-based 

administration of the math assessment was optional in PISA 2012, this study only employed the 

paper-based assessment data files. The cognitive data file contained each student’s responses to 

the items in the main survey that measured mathematics, reading, and science. Cognitive data 

was provided in both its raw/original form and scored form. It should be noted that according to 

the official scoring guidelines, missing responses that were not at the end of the test booklet and 

were followed by valid responses, were assumed to be skipped by the respondents (i.e., omitted 

or invalid responses) and were scored as incorrect (OECD, 2014). Although this distinction 

between ‘not reached’ and ‘omitted/invalid’ items has been known to introduce bias1 (Glas & 

Pimentel, 2008; Ludlow & O'Leary, 1999; Rose et al., 2017), the scored cognitive data file 

named INT_COG12_S_DEC03.txt was used in this study as it was based on the official scoring 

guideline of PISA 2012.  

The publicly available student data file named INT_STU12_DEC03.txt contained 

variables from the background measures as well as demographic information collected from 

students. With regard to the background measures, students’ original responses to the items, as 

well as summary indices that were derived through IRT scaling, were contained in this data file. 

Five plausible values, serving as summary proficiency scores for each student in each domain, 

                                                 
1 Scoring omitted responses as incorrect responses and treating not-reached items as not administered items has been 
shown to advantage respondents who answered the same number of items in a test but reached more items, even 
when they omitted more items (Ludlow & O'Leary, 1999).  
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were also contained in this file, as were three sets of student sampling weights (replicate, final, 

and senate).  

Except for the analyses that required specialized software packages, all data cleaning, 

analyses, and visualizations were programmed in R (R Core Team, 2019). 

Sample 

Cognitive and student data files were merged by country, school ID, and student ID as 

described in PISA Data Analysis Manual (2009). The original data files contained data from 68 

countries/economies including region-level data from three states of the United States (Florida, 

Connecticut, and Massachusetts) and a city of Russian Federation (Perm). Data from these four 

jurisdictions were removed from the analyses before merging the files. Additionally, among the 

64 countries left in the data file, data from Albania were removed due to known problems in the 

administration of the assessment (Gortazar et al., 2014) and data from Liechtenstein were 

removed due to small sample size (N=293). Finally, based on the preliminary analyses, 

Shanghai-China was found to be an outlier with respect to country-mean math proficiency and 

math self-efficacy within the distribution of all sixty-two countries. Country-mean math 

proficiencies and math self-efficacy indices were used in this study to examine their relationships 

with within-country correlation estimates. Given that there are only 60+ countries observed, an 

outlying country could have a big influence on the results. Therefore, data from Shanghai-China 

were excluded from the analyses.  

The final dataset that contained 468,200 students from 61 participating countries was 

utilized. The numbers of students and schools participating in PISA 2012 are listed by country in 

the Appendix (Table A.2).  
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Variables 

Item-level variables 

Student response data for four measures were employed in latent variable models. There 

were, in total, 127 item-level variables: 

Math Proficiency (109 variables): Math performance, the sole cognitive outcome, was measured 

by 109 items in total; 11 were partial credit (i.e., complex multiple choice or constructed-

response items) and 98 were dichotomous (i.e., multiple choice or dichotomously scored 

constructed-response items). The study employed scored data that was provided in the PISA 

international database so no extra recoding was needed for these variables.  

Math Self-efficacy (8 variables): Students’ math self-efficacy was measured by eight items. All 

eight items were reversed-coded so that higher difficulty was associated with higher math self-

efficacy. The items are listed below. 

Table 3.1. Items measuring math self-efficacy 

Stem: How confident do you feel about having to do the following mathematics tasks? 
Response categories: Very confident, Confident, Not very confident, Not at all confident  
 

Variable Name Item 

ST37Q01 a) Using a <train timetable> to work out how long it would take to get from 
one place to another. 

ST37Q02 b) Calculating how much cheaper a TV would be after a 30% discount. 
ST37Q03 c) Calculating how many square meters of tiles you need to cover a floor. 
ST37Q04 d) Understanding graphs presented in newspapers. 
ST37Q05 e) Solving an equation like 3x+5 = 17. 

ST37Q06 f) Finding the actual distance between two places on a map with a 1:10 000 
scale. 

ST37Q07 g) Solving an equation like 2(x+3) = (x + 3) (x - 3). 
ST37Q08 h) Calculating the petrol consumption rate of a car. 
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Math Anxiety (5 variables): Students’ math anxiety was measured by five items. All five items 

were reversed-coded so that higher difficulty was associated with higher math anxiety. The items 

are listed below. 

Table 3.2. Items measuring math anxiety 

Stem: Thinking about studying mathematics: to what extent do you agree with the following 
statements? 
Response categories: Strongly agree, Agree, Disagree, Strongly disagree 
 

Variable Name Item 
ST42Q01 a) I often worry that it will be difficult for me in mathematics classes. 
ST42Q03 c) I get very tense when I have to do mathematics homework. 
ST42Q05 e) I get very nervous doing mathematics problems. 
ST42Q08 h) I feel helpless when doing a mathematics problem. 
ST42Q10 j) I worry that I will get poor <grades> in mathematics. 

 

Math Self-concept (5 variables): Students’ math self-concept was measured by five items. All 

five items except ST42Q02 were reverse-coded so the higher difficulty was associated with 

higher math self-concept. The items are listed below. 

Table 3.3. Items measuring math self-concept 

Stem: Thinking about studying mathematics: to what extent do you agree with the following 
statements? 
Response categories: Strongly agree, Agree, Disagree, Strongly disagree 
 

Variable Name Item 
ST42Q02 b) I am just not good at mathematics. 
ST42Q04 d) I get good <grades> in mathematics. 
ST42Q06 f) I learn mathematics quickly. 
ST42Q07 g) I have always believed that mathematics is one of my best subjects. 
ST42Q09 i) In my mathematics class, I understand even the most difficult work. 
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Student-level variables 

Summary, individual-level indices for the background measures math self-efficacy 

(MATHEFF), math anxiety (ANXMAT), and math self-concept (SCMAT) were provided in the 

form of weighted likelihood estimates (WLEs). WLEs were obtained by employing the Partial 

Credit Model and, then, transformed to an international metric with an OECD average of zero 

and an OECD standard deviation of one, in the PISA database. These summary indices for the 

background measures, as well as five plausible values for cognitive outcome math proficiency 

(PV1MATH, PV2MATH, PV3MATH, PV4MATH, and PV5MATH), were employed in linear 

models in this study. To facilitate comparisons of the summary statistics gathered from different 

models, these variables were standardized within each country before they were employed in the 

analytical procedures. Standardization of the variables was done by using the scale function 

available in R. The scale function generates z-scores by centering the variable at its mean and 

scaling it by its standard deviation as shown below. 

 𝑥𝑥𝑧𝑧 =
𝑥𝑥 − 𝑚𝑚𝑒𝑒𝑉𝑉𝑉𝑉(𝑥𝑥)

𝑠𝑠𝑢𝑢(𝑥𝑥)
 (3.1) 

Missing Data 

Similar to the design for cognitive items as described in Chapter 2, PISA 2012 introduced 

a rotation design for the context questionnaire, which brought challenges to this study with 

respect to within-country sample sizes. In this rotated design, except for the common component 

that contained demographic questions such as age and gender, items were grouped into three 

blocks and each item block was administered to only two thirds of the sample in each country 

(OECD, 2013a). For example, out of three forms created by rotating item blocks, the math self-
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efficacy scale was placed in only Forms A and B, and not in Form C. The implication of this 

rotated design for this study was that there were neither response data nor imputed summary 

indices of students’ math self-efficacy available for one third of the sample. Furthermore, math 

self-concept and math anxiety were placed in only Form B and C (Appendix, Figure A.1). 

Therefore, to be able to use all three measures for RQ5 of this study, only one third of the sample 

could be employed. The use of a rotated design for the context questionnaire has raised 

methodological concerns about possible biases (von Davier, 2014). Nonetheless, the data that 

were missing by design were considered as missing at random (MAR), and were listwise deleted 

from the dataset. Moreover, summary indices in the dataset were provided only for the students 

who responded to at least one item in the scale. Therefore, there were no summary scale data 

available for students who did not respond to any items on that scale. The missing cases 

remaining after listwise deletion of MAR cases (i.e. missing by design) were considered as not 

missing at random (NMAR). Although listwise deletion of NMAR observations can be 

problematic2, these cases were also removed from the sample. In the final dataset, there were 

305,051 students from 61 participating countries. Final sample sizes by each country are listed in 

the Appendix (Table A.2). 

Weighting 

The PISA international database provided both student full sample (unscaled) sampling 

weights (W_FSTUWT) as well as senate (scaled) weights (senwgt_STU). Senate weights were 

computed by normalizing unscaled sampling weights so that students’ senate weights summed to 

1000 in each country. The use of senate weights was preferred as they could mitigate the impact 

                                                 
2 If the probability of being NMAR depends on the value of the criterion variable, the regression coefficient 
estimates are biased. See Little & Rubin (2002). 
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of differences among within-country sample sizes on analyses that involved more than one 

country. As senate weights provided in the PISA database were scaled based on the full sample, 

new senate weights were computed based on the final samples after the listwise deletion of the 

missing cases. Within each country, the new senate weights were calculated as follows. 

 𝑉𝑉𝑒𝑒𝑏𝑏_𝑠𝑠𝑒𝑒𝑉𝑉𝑏𝑏𝑔𝑔𝑏𝑏_𝑆𝑆𝑇𝑇𝑆𝑆 = 1000 ∗
𝑊𝑊_𝐹𝐹𝑆𝑆𝑇𝑇𝑆𝑆𝑊𝑊𝑇𝑇

𝑠𝑠𝑢𝑢𝑚𝑚(𝑊𝑊_𝐹𝐹𝑆𝑆𝑇𝑇𝑆𝑆𝑊𝑊𝑇𝑇)
 (3.2) 

Although school-level weights were also provided in the database, they were not 

employed due to their incompatibility with the specialized software packages used in the study. 

3.2 Analysis Overview 

A step-wise model refinement approach was proposed to better understand the impact of 

clustering and measurement error on the analysis of PISA data. The step-wise model refinement 

comprised four different statistical techniques as listed below to address the first three research 

questions of the study.  

Table 3.4. Model refinement steps 

 Accounting for Measurement Error 
  No Yes 

Accounting for 
Clustering 

No Ordinary Regression Model 
(Conventional) 

Multidimensional IRT Model 
(MIRT)  

Yes Multilevel Linear Model 
(MLM) 

Multilevel Multidimensional 
Mixture IRT (MLMixMIRT) 

 

In order to make comparisons between models possible, correlation coefficients were 

chosen as the summary statistics to be compared at each step because they could easily be 



62 
 

obtained from each of the four modeling techniques that were used. Correlation is a measure of 

association and does not imply any causal relationships between the variables. That is, in contrast 

to regression analysis, correlation analysis does not describe a prediction of a dependent variable 

based on the value of an independent variable. As the main goal of this study was to make 

comparisons of the summary statistics and not predictive inferences, this was not a limitation.  

Moreover, with regard to the comparability of the correlation estimates across various 

modeling techniques, it should be emphasized that modeling approaches that were used in this 

study required employing different sets of variables from the PISA data. As mentioned earlier, 

item response data were employed in latent variable models (i.e., MIRT and MLMixMIRT) 

whereas summary indices of the background measures and plausible values (PVs) of cognitive 

outcome were employed in linear models (i.e., OLS and MLM). As discussed in more detail in 

Chapter 2, PVs are generated by latent regression modeling which incorporates both students’ 

background information and their responses to the items administered to capture uncertainty 

resulting from the use of matrix sampling of the items and to approximate sub-population 

characteristics. Because they carry more information than students’ responses to the items, they 

are expected to be slightly different from other estimators of the latent variable such as EAPs or 

WLEs obtained by employing IRT modeling. Note that the correlation estimates obtained from 

the latent trait models that were conducted in this study were not based on EAP or WLE point 

estimates but rather based on the estimated two-dimensional latent distributions. Nevertheless, 

PVs and EAPs obtained from the MIRT models were compared to ensure that the use of different 

sources of data did not jeopardize the comparability across models. 

In the first step of the model refinement, ordinary linear regression models were fit to the 

data from each participating country and the resulting standardized regression coefficients (i.e., 
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Pearson correlations) were gathered as the conventional correlation estimates. Secondly, a two-

dimensional IRT model was fit to the data from each participating country. The resulting 

estimated correlations between two latent traits were examined. As the next step, a multilevel 

linear modeling approach was used to take into account the clustering in the PISA data. Finally, 

in order to take into account both measurement error and clustering, multilevel multidimensional 

mixture IRT (MLMixMIRT) modeling was employed. With MLMixMIRT modeling, underlying 

subpopulations that were not directly observed in the item response data were produced based on 

maximizing within-class homogeneity and between-class heterogeneity, and correlation 

estimates for the resulting latent classes were examined accordingly, showing to what extent the 

variability of correlations across countries may depend on clustering of students collected in 

countries. Again, these models were estimated separately for each participating country in PISA 

2012.  

The distributions of these country-level correlation estimates were compared across 

models to ascertain the impact of taking into account one or both of the confounding factors. The 

changes in the estimates were also examined in relation to (i) the amount of the measurement 

error, by utilizing within-country reliability estimates and (ii) the degree of clustering, by 

utilizing intra-class correlations (ICC) within countries. Moreover, it was of interest to examine 

whether differences in correlation estimates among populations were moderated by group-level 

performance. This relationship was investigated both at the country-level and at the school-level 

within countries. Although it was expected that within-country relationships would be more 

similar (among populations) after the model refinement steps were implemented, population-

level performance might still moderate the relationships between math self-efficacy and math 

performance. It was possible that even after measurement error and clustering were taken into 
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account, the correlations would be weaker in lower-performing countries. Therefore, this was 

investigated further by examining the relationship between school-level performance and the 

correlations between math self-efficacy and math achievement. If stronger correlations were 

observed in higher performing schools, it could be argued that there were other reasons, such as 

students’ lower levels of meta-cognition (i.e., the Dunning-Kruger effect) that resulted in weaker 

correlations. 

Finally, a supplementary set of analyses employing a composite variable that comprised 

multiple background indicators were conducted to determine whether using multiple indicators 

substantially reduced measurement error in the background measure and, hence, the impact of 

measurement error on correlation estimates. Principal component analysis (PCA) was used to 

create the composite variable. Although employing a composite indicator as the background 

measure instead of the math self-efficacy measure alone led to a change in the construct and had 

a different substantive interpretation, this procedure was carried out as part of a more general 

methodological investigation. 

Phase 1: Conventional Analysis of Within-Country Relationships 

In this first phase, the relationship between students’ math self-efficacy and math 

performance was examined by fitting ordinary linear regression models. Because there were five 

plausible values of math performance provided in the PISA 2012 database, five separate models 

were fit to the data from each country. Summary indices of students’ math self-efficacy were 

employed as the only predictor of the cognitive outcome and standardized regression 

coefficients, which are Pearson correlations when the regression model has only one predictor, 

were estimated.  
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 (𝑃𝑃𝑉𝑉1𝑀𝑀𝑀𝑀𝑇𝑇𝑀𝑀_𝑠𝑠)𝑖𝑖 = 𝑏𝑏 ∗ (𝑀𝑀𝑀𝑀𝑇𝑇𝑀𝑀𝐸𝐸𝐹𝐹𝐹𝐹_𝑠𝑠)𝑖𝑖 + 𝑒𝑒𝑖𝑖 , (3.3) 

 (𝑃𝑃𝑉𝑉2𝑀𝑀𝑀𝑀𝑇𝑇𝑀𝑀_𝑠𝑠)𝑖𝑖 = 𝑏𝑏 ∗ (𝑀𝑀𝑀𝑀𝑇𝑇𝑀𝑀𝐸𝐸𝐹𝐹𝐹𝐹_𝑠𝑠)𝑖𝑖 + 𝑒𝑒𝑖𝑖 , (3.4) 

 (𝑃𝑃𝑉𝑉3𝑀𝑀𝑀𝑀𝑇𝑇𝑀𝑀_𝑠𝑠)𝑖𝑖 = 𝑏𝑏 ∗ (𝑀𝑀𝑀𝑀𝑇𝑇𝑀𝑀𝐸𝐸𝐹𝐹𝐹𝐹_𝑠𝑠)𝑖𝑖 + 𝑒𝑒𝑖𝑖 , (3.5) 

 (𝑃𝑃𝑉𝑉4𝑀𝑀𝑀𝑀𝑇𝑇𝑀𝑀_𝑠𝑠)𝑖𝑖 = 𝑏𝑏 ∗ (𝑀𝑀𝑀𝑀𝑇𝑇𝑀𝑀𝐸𝐸𝐹𝐹𝐹𝐹_𝑠𝑠)𝑖𝑖 + 𝑒𝑒𝑖𝑖 , (3.6) 

 (𝑃𝑃𝑉𝑉5𝑀𝑀𝑀𝑀𝑇𝑇𝑀𝑀_𝑠𝑠)𝑖𝑖 = 𝑏𝑏 ∗ (𝑀𝑀𝑀𝑀𝑇𝑇𝑀𝑀𝐸𝐸𝐹𝐹𝐹𝐹_𝑠𝑠)𝑖𝑖 + 𝑒𝑒𝑖𝑖 , (3.7) 

where 𝑃𝑃𝑉𝑉(1 − 5)𝑀𝑀𝑀𝑀𝑇𝑇𝑀𝑀_𝑠𝑠𝑖𝑖 represent the five plausible values of student i's math representing 

the performance criterion. These were standardized within each country.𝑀𝑀𝑀𝑀𝑇𝑇𝑀𝑀𝐸𝐸𝐹𝐹𝐹𝐹_𝑠𝑠𝑖𝑖 is the 

standardized measure of student i's math self-efficacy; b represents the standardized regression 

coefficient as the correlation estimate; and 𝑒𝑒𝑖𝑖 is the residual term representing the deviation of 

student i's observed math performance from their predicted math performance. 

In total, sixty-one sets of five regression models were fit in R using senate weights 

(𝑉𝑉𝑒𝑒𝑏𝑏_𝑠𝑠𝑒𝑒𝑉𝑉𝑏𝑏𝑔𝑔𝑏𝑏_𝑆𝑆𝑇𝑇𝑆𝑆). In order to use plausible values and take the imputation variance into 

account, Rubin’s (1987) method for pooling parameter estimates was used. Rubin’s method was 

programmed in R. This procedure is also described in the PISA 2012 Technical Report (OECD, 

2014). 

First, the population estimate was calculated by taking the average of the correlation 

estimates (r) from each of the five regression models as shown below. 

 𝑟𝑟 =
1
5
� 𝑟𝑟𝑚𝑚

5

𝑚𝑚=1
 (3.8) 
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Similarly, sampling variance (U) was calculated by taking the average of the variances of 

the correlation estimates gathered from each of the five regression models. 

 𝑆𝑆 =
1
5
� 𝑆𝑆𝑚𝑚

5

𝑚𝑚=1
 (3.9) 

Using plausible values, imputation variance (B) (i.e., the uncertainty in the estimates due 

to measurement error) was obtained by calculating the deviations of each correlation estimate 

from the population estimate as shown below.  

 𝐵𝐵 =
1
4
� (𝑟𝑟𝑚𝑚 − 𝑟𝑟)2

5

𝑚𝑚=1
 (3.10) 

Finally, the total variance (V) of the pooled population estimate was calculated by 

combining sampling and imputation variances as shown below. 

 𝑉𝑉 = 𝑆𝑆 + �6
5� � ∗ 𝐵𝐵 (3.11) 

The distribution of Pearson correlations of the within-country relationships between math 

self-efficacy and math proficiency was examined. Because conventional correlation estimates 

did not account for differences in the data gathered from countries with regard to measurement 

error or clustering, the distribution was expected to display substantial variability. Moreover, it 

was of interest to examine whether the attitude-achievement paradox held true when the data 

were aggregated to the country level. According to the correlation estimates reported in the PISA 

2012 results (OECD, 2013b), within-country relationships between math proficiency and math 

self-efficacy were positive in all participating countries. The Pearson correlation between mean 
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math self-efficacy and mean math proficiency at the country level was evaluated for differences 

from the results found at the within-country level.  

It was also hypothesized that the within-country relationships would be weaker in lower-

achieving countries. Students with lower cognitive skills are generally inclined to randomly 

guess or omit items due to factors such as not understanding the questions or being unfamiliar 

with the types of questions given in PISA. Therefore, both the cognitive and non-cognitive 

measures from lower-achieving countries were likely to incorporate substantial uncertainty and 

conventional estimates of within-country relationships were expected to be attenuated. A 

scatterplot of the relationship between within-country correlations and country-mean math 

proficiency was examined to determine whether the expected differences emerge. 

Phase 2: Refinement with Multidimensional IRT Modeling 

After obtaining the conventional within-country correlation estimates in the first phase, 

the first step of the model refinement process was performed. Two-dimensional two-parameter 

logistic IRT models were fit to account for the uncertainty in both cognitive outcome and non-

cognitive background measure. The correlations estimated using this multidimensional item 

response theory (MIRT) approach are hereafter referred to as “MIRT estimates”. The research 

question to be answered in this phase of the study was:  

(RQ1) “When modeling techniques are used to properly account for measurement 

error in the observed data, do the estimates of within-country relationships between 

math self-efficacy and math achievement display greater homogeneity across countries 

than the conventional, within-country correlation estimates?” 
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In total, sixty-one MIRT models were fit by using the mdltm software package (von 

Davier, 2005b) which was chosen for this study because it could accommodate both sparse data 

and large-scale data analyses. Moreover, mdltm enables fitting multilevel multidimensional 

mixture IRT models – required for the final step of the model refinement. Two-dimensional IRT 

models were fit to the item response data in a confirmatory manner; that is, math proficiency 

items and math self-efficacy items were assigned to two separate dimensions in the estimation. 

In order to incorporate the multidimensionality within the model, a binary 117 x 2 Q-matrix was 

developed (Appendix, Table A.3); 8 math self-efficacy items were specified with a value of one 

under the first dimension and zero under the second dimension, 109 math items were specified as 

zero under the first dimension and one under the second dimension.  

Because both math self-efficacy and math proficiency scales contained polytomous 

items (𝑥𝑥 ∈ {0, … ,𝑚𝑚𝑖𝑖}), the multidimensional extension of the GPCM, discussed in Chapter 2, 

was employed to model responses to polytomous items. In this model, the probability of 

selecting the 𝑘𝑘𝑏𝑏ℎ category over the previous category for an individual with underlying two-

dimensional trait (�⃗�𝜃) is defined for item i as follows. 

 𝑠𝑠𝑖𝑖�𝑥𝑥 = 𝑘𝑘��⃗�𝜃,𝛼𝛼𝚤𝚤���⃗ ,𝛽𝛽𝑖𝑖𝑖𝑖� =
𝑒𝑒𝑥𝑥𝑠𝑠 [𝑘𝑘𝛼𝛼𝚤𝚤���⃗ �⃗�𝜃 − ∑ 𝛽𝛽𝑖𝑖ℎ𝑖𝑖

ℎ=1 ]
1 + ∑ 𝑒𝑒𝑥𝑥𝑠𝑠 [𝑦𝑦𝛼𝛼𝚤𝚤���⃗ �⃗�𝜃 − ∑ 𝛽𝛽𝑖𝑖ℎ

𝑦𝑦
ℎ=1 ]𝑚𝑚𝑖𝑖

𝑦𝑦=1

 (3.12) 

where 𝛽𝛽𝑖𝑖ℎ is the intercept parameter of the transition from the (ℎ − 1)th category to ℎ𝑏𝑏ℎ category, 

𝛼𝛼𝚤𝚤���⃗  is the item slope parameter, and 𝑚𝑚𝑖𝑖 is the total number of categories.  

Individuals’ underlying latent traits were estimated by using expected a posteriori (EAP 

or Bayes Mean Estimate) (Bock & Aitkin, 1981; Bock & Mislevy, 1982) by which the mean of 

the posterior distribution resulting from the estimation process was used as the final estimate (𝜃𝜃�). 
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In comparison to the maximum likelihood estimator (MLE), EAP can provide estimates for all 

response patterns including all correct or all incorrect. Therefore, finite 𝜃𝜃 estimates were 

available for all individuals in the data. Moreover, EAP has been found to be advantageous in 

comparison to maximum a posteriori (MAP or Bayes Modal Estimate) because (i) the mean 

squared error of EAP estimates is smaller and (ii) EAP is more efficient due to its simpler 

calculation requirements.  

Ability estimates gathered from the multidimensional IRT models were standardized to 

make them comparable with the estimates from the other models employed in the model 

refinement process. Standardized estimates were obtained from the mdltm output. Note that 

correlations between latent traits were estimated jointly within the multidimensional IRT 

estimation and were not based on EAP point estimates but rather based on the estimated two-

dimensional latent distributions. Therefore, the estimated correlations were corrected for 

measurement error. These correlations were labelled “skill distribution correlations” in the 

output. 

Because measurement error in the response variables could result in attenuation in the 

correlation estimates, conventional within-country correlations that were found in Phase 1 were 

expected to display substantial variation due to the differences in the amount of measurement 

error across countries. When latent trait models were introduced and measurement error was 

properly accounted for, it was expected that the distribution of within-country correlations would 

have smaller variance compared to the variance of the distribution of conventional within-

country correlation estimates. Moreover, the relationship between within-country correlations 

and country-level proficiency was expected to be weakened for MIRT estimates in comparison 

to conventional estimates. Both cognitive and non-cognitive measures are known to incorporate 
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substantial uncertainty in the data gathered from especially lower-achieving countries. Therefore, 

MIRT estimates were expected to be not as strongly associated with country-level proficiencies 

as conventional linear regression based estimates.  

The magnitudes of the changes at the country level were also examined in relation to the 

magnitudes of the measurement error at the country-level, by using empirical reliabilities.  In 

contrast to Classical Test Theory, a scale’s reliability is not constant but conditional on the 

ability estimate in the IRT framework. However, in order to assess the quality of estimation for 

the entire scale, empirical reliability indices can be used. In this study, EAP reliability (Adams, 

2005) was used to examine the amount of measurement error in the data. EAP reliability was 

calculated based on the ratio of the variance of the ability estimates (i.e., EAP estimates) to the 

population variance of the latent variable as shown below.  

 𝐸𝐸𝑀𝑀𝑃𝑃 𝑆𝑆𝑒𝑒𝑜𝑜𝑖𝑖𝑉𝑉𝑏𝑏𝑖𝑖𝑜𝑜𝑖𝑖𝑏𝑏𝑦𝑦 =
𝑣𝑣𝑉𝑉𝑟𝑟(𝜃𝜃�)

𝑣𝑣𝑉𝑉𝑟𝑟(𝜃𝜃�) +  𝑚𝑚𝑒𝑒𝑉𝑉𝑉𝑉(𝑠𝑠�)
 (3.13) 

where �̂�𝑠 denotes the square of the estimated measurement error attached to each EAP estimate 

resulting from the multidimensional IRT modeling. 

For each country, two EAP reliability indices were calculated; one for math self-efficacy 

and one for math proficiency. Similar to the CTT-based reliability indices, the EAP reliability 

has a range from 0 to 1 and values that are closer to 1 are desirable as they indicate smaller error 

variance. However, IRT-based reliability indices are expected to be more precise than 

conventional reliability estimates such as Cronbach’s alpha. Country-level EAP reliabilities were 

examined in relation to the changes in the correlation estimates from Phase 1 to Phase 2. Because 
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measurement error could be a major cause of attenuation in the correlation estimates, greater 

changes were expected to be seen for the countries with larger measurement error.  

Phase 3: Refinement with Multilevel Linear Modeling 

In this phase of the analyses, two-level linear models were fit within each country to 

estimate the correlation between math performance and math self-efficacy while taking into 

account the clustering of students in schools. These estimates are hereafter referred to as “MLM 

estimates”. The research question that was the focus in this phase of the study was:  

(RQ2) “When the clustered nature of the observed data is taken into account, do the 

estimates of within-country relationships between math self-efficacy and math 

achievement have greater homogeneity across countries than displayed by the 

conventional correlation estimates?” 

First, unconditional models were fit with no predictors to examine the variation among 

schools within each country with respect to the outcome variable and to determine whether there 

was a need for multilevel modeling.  

Unconditional model: 

 Level−1 Model: (𝑃𝑃𝑉𝑉1𝑀𝑀𝑀𝑀𝑇𝑇𝑀𝑀_𝑠𝑠)𝑖𝑖𝑗𝑗 = 𝛽𝛽0𝑗𝑗 + 𝑟𝑟𝑖𝑖𝑗𝑗 (3.14) 

 Level−2 Model: 𝛽𝛽0𝑗𝑗 = 𝛾𝛾00 + 𝑢𝑢0𝑗𝑗  (3.15) 

 Mixed Model: (𝑃𝑃𝑉𝑉1𝑀𝑀𝑀𝑀𝑇𝑇𝑀𝑀_𝑠𝑠)𝑖𝑖𝑗𝑗 = 𝛾𝛾00 + 𝑢𝑢0𝑗𝑗 + 𝑟𝑟𝑖𝑖𝑗𝑗  (3.16) 

In the models above, (𝑃𝑃𝑉𝑉1𝑀𝑀𝑀𝑀𝑇𝑇𝑀𝑀_𝑠𝑠)𝑖𝑖𝑗𝑗 represents the first standardized plausible value of 

math performance of student i in school j; 𝛽𝛽0𝑗𝑗 represents the mean math performance in school j; 
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𝛾𝛾00 represents the average of the school means (or grand mean) of the outcome for the 

population of schools within the country; 𝑢𝑢0𝑗𝑗 is the residual term representing school j’s 

deviation from the grand mean; and 𝑟𝑟𝑖𝑖𝑗𝑗 is the residual term representing the deviation of student 

ij’s observed math performance from the mean math performance in school j. This model was 

repeated for all five plausible values (𝑃𝑃𝑉𝑉(1 − 5)𝑀𝑀𝑀𝑀𝑇𝑇𝑀𝑀_𝑠𝑠𝑖𝑖) and Rubin’s method used in Phase 1 

was employed for pooling the estimates for each country. 

The unconditional models enabled calculation of the intra-class correlations (ICC) which 

was the proportion of total variance in students’ math performance that could be attributed to the 

variation among schools.  

 𝐼𝐼𝐼𝐼𝐼𝐼 =
𝜏𝜏00

𝜏𝜏00 + 𝜎𝜎2
 , (3.17) 

where 𝜏𝜏00 is the estimated between-school variance and 𝜎𝜎2 is the estimated within-school 

variance. 

As the next step of Phase 3, a second set of two-level linear models in which student 

math self-efficacy index was added as a covariate at the student-level was fit. In these models, 

the intercept 𝛽𝛽0𝑗𝑗 was allowed to vary across schools but no school-level variable was added to 

explain this variation. School-to-school variation of the relationship between math performance 

and math self-efficacy (𝛽𝛽1𝑗𝑗) was not allowed (i.e., fixed slope). 

Conditional Model: 

 Level−1 Model: (𝑃𝑃𝑉𝑉1𝑀𝑀𝑀𝑀𝑇𝑇𝑀𝑀_𝑠𝑠)𝑖𝑖𝑗𝑗 = 𝛽𝛽0𝑗𝑗 + 𝛽𝛽1𝑗𝑗(𝑀𝑀𝑀𝑀𝑇𝑇𝑀𝑀𝐸𝐸𝐹𝐹𝐹𝐹_𝑠𝑠)𝑖𝑖𝑗𝑗 + 𝑟𝑟𝑖𝑖𝑗𝑗 (3.18) 
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 Level−2 Model: 𝛽𝛽0𝑗𝑗 = 𝛾𝛾00 + 𝑢𝑢0𝑗𝑗  (3.19) 

   𝛽𝛽1𝑗𝑗 = 𝛾𝛾10 (3.20) 

 Mixed Model: (𝑃𝑃𝑉𝑉1𝑀𝑀𝑀𝑀𝑇𝑇𝑀𝑀_𝑠𝑠)𝑖𝑖𝑗𝑗 = 𝛾𝛾00 + 𝛾𝛾10(𝑀𝑀𝑀𝑀𝑇𝑇𝑀𝑀𝐸𝐸𝐹𝐹𝐹𝐹_𝑠𝑠)𝑖𝑖𝑗𝑗 + 𝑢𝑢0𝑗𝑗 + 𝑟𝑟𝑖𝑖𝑗𝑗 , (3.21) 

where 𝛾𝛾10 represents the average school mean (or grand mean) of the correlation between math 

self-efficacy and math performance. Similar to the unconditional models, conditional models 

were for all five plausible values (𝑃𝑃𝑉𝑉(1 − 5)𝑀𝑀𝑀𝑀𝑇𝑇𝑀𝑀_𝑠𝑠𝑖𝑖) and Rubin’s method was employed for 

pooling the estimates for each country. 

In total, sixty-one sets of unconditional and sixty-one sets of conditional two-level linear 

models were fit by using the lme4 package (Bates et al., 2015) in R, which allowed the use of 

senate weights. In order to employ plausible values, the same procedure with Rubin’s method for 

pooling estimates used in Phase 1 was used for pooling the MLM correlation estimates (𝛽𝛽1𝑗𝑗) for 

each country. 

The distribution of standardized regression coefficients as correlation estimates of the 

within-country relationships between math self-efficacy and math proficiency was examined. It 

was expected that the distribution had smaller variability compared to the one found in Phase 1. 

That is, when the clustered nature of the data was not taken into account, the correlation 

estimates could vary due to the differences among countries with respect to the level of 

dissimilarity across schools (i.e., school level achievement gaps). Therefore, within-country 

correlation estimates were expected to be more similar when the clustering of students within 

schools was accounted for.  
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Moreover, the question whether within-country correlations were associated with 

country-level average proficiency was examined with respect to whether this association 

changed after accounting for the clustering. Taking the clustering into account was likely to lead 

to less variation among within-country correlations. Consequently, the association between 

conventional correlation estimates and country-level proficiencies was likely to be weaker. 

Furthermore, if the correlation estimates differed in comparison to the conventional estimates 

found in Phase 1, the magnitudes of the changes at the country level were examined in terms of 

country-level between-school variances (i.e., ICCs). The changes were expected to be greater for 

countries where the ICCs were larger and the conventional correlation estimates were less 

accurate. 

Phase 4: Refinement with Multilevel Multidimensional Mixture IRT Modeling 

In this phase of the analyses, the final step of the model refinement process constituted 

fitting multilevel two-dimensional mixture IRT models in each country to obtain estimated 

correlations between math performance and math self-efficacy, while taking account of both the 

measurement error in the variables and the clustering in the data. In addition, employing mixture-

distribution IRT enabled accounting for the possibility of distinct underlying subpopulations 

within the population (i.e., latent class structure). The estimates gathered from MLMixMIRT 

models are hereafter referred to as “MLMixMIRT estimates”. The research question that was the 

focus of this phase was:  

(RQ3) “When modeling techniques are used to properly account for both measurement 

error and clustering in the observed data, do the estimates of within-country 

relationships between math self-efficacy and math achievement show greater 

homogeneity across countries than that displayed by the conventional correlation 
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estimates or the ones gathered from the models that account for either measurement 

error or clustering only?” 

In total, sixty-one multilevel two-dimensional mixture IRT models were fit by using the 

mdltm package developed by von Davier (2005b). This package was used in this study to fit 

multidimensional IRT and multilevel multidimensional mixture IRT models due to its flexibility 

in handling large, sparse datasets, along with its ability to model complex multilevel 

multidimensional IRT models.  

Although the underlying latent structure is generally unknown in mixture-distribution 

IRT models, a smaller number of latent classes is preferred so that it is more likely that the latent 

classes can be meaningfully interpreted. However, optimal decision rules on the number of 

classes in LCA and mixture IRT models is an unresolved problem (Nylund et al., 2007). If the 

decision on the number of latent classes cannot be informed by previous research on the topic or 

the research context, exploratory approaches are adopted. These conduct goodness-of-fit 

analyses, such as those based on likelihood ratio or model-data fit indices to choose the most 

parsimonious model (Sen & Terzi, 2019). For this study, constraining the MLMixMIRT models 

to have two latent classes is a reasonable choice based on previous research (von Davier, 2005a; 

von Davier, Yamamoto, et al., 2019). Moreover, because the model structure had to be kept the 

same across all countries in order to have comparable estimates, a smaller number of latent 

classes was preferred so that small class proportions did not become an issue and resulting latent 

classes could be interpreted similarly. Given the size of the dataset and the volume of analyses in 

this study, a larger number of classes was not tested but should be considered in future research.  

Within each country, the split into two classes was allowed to vary across clusters (i.e., 

schools), so that different proportions of students could be in latent class 1 and 2 respectively, 
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depending on which cluster they were sampled from. This makes the approach a multilevel latent 

class model (Vermunt, 2008). In addition, for each country, separate sets of item parameters 

were estimated for each of the two latent classes. That is, students’ observed responses were 

assumed to depend on both their underlying latent trait on the two dimensions (�⃗�𝜃 = (𝜃𝜃1,𝜃𝜃2)) and 

underlying latent class (𝑔𝑔 ∈ {1,2}). However, as mentioned in Chapter 2, it was reasonable and 

more feasible to assume that item parameters did not differ from cluster to cluster and the same 

latent class distribution could be assumed for all clusters (s) in the data. Therefore, the 

proportions of students within each latent class were allowed to vary across schools, while the 

classes that were assumed to exist within schools had the same ability distribution across 

schools. Note that MLMixMIRT models were fit separately to the data from each country and, 

thus, class-specific item parameter sets did differ from country to country. As an example, a 

representation of the multilevel estimation process for one country and one dimension is given 

below. 
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Figure 3.1. Illustration of MLMixMIRT modeling process for one country in a 

unidimensional setting 
 

The 117 x 2 Q-matrix that was developed in Phase 2 to fit MIRT models was also used to 

fit MLMixMIRT models (Appendix, Table A.3). Because both math self-efficacy and math 

proficiency scales had polytomous items (𝑥𝑥 ∈ {0, … ,𝑚𝑚𝑖𝑖}), the multidimensional extension of the 

GPCM with a mixture distribution was employed to model students’ responses. In this model, 

the conditional probability of 𝑘𝑘𝑏𝑏ℎ category over the previous category in a polytomous item (𝑥𝑥 ∈

{0, … ,𝑚𝑚𝑖𝑖}) given the individual’s underlying latent trait on two dimensions (�⃗�𝜃) and underlying 

latent class (g) can be defined as shown below. 

 
𝑠𝑠𝑖𝑖�𝑥𝑥 = 𝑘𝑘��⃗�𝜃,𝛼𝛼𝚤𝚤���⃗ ,𝛽𝛽𝑖𝑖𝑖𝑖,𝑔𝑔� =

𝑒𝑒𝑥𝑥𝑠𝑠 [𝑘𝑘𝛼𝛼𝚤𝚤𝑔𝑔������⃗ 𝑞𝑞𝚤𝚤���⃗ �⃗�𝜃 − ∑ 𝛽𝛽𝑖𝑖ℎ𝑔𝑔𝑖𝑖
ℎ=1 ]

1 + ∑ 𝑒𝑒𝑥𝑥𝑠𝑠 [𝑦𝑦𝛼𝛼𝚤𝚤𝑔𝑔������⃗ 𝑞𝑞𝚤𝚤���⃗ �⃗�𝜃 − ∑ 𝛽𝛽𝑖𝑖ℎ𝑔𝑔
𝑦𝑦
ℎ=1 ]𝑚𝑚𝑖𝑖

𝑦𝑦=1

 
(3.22) 

where 𝛽𝛽𝑖𝑖ℎ𝑔𝑔 denote class-specific item intercept parameters of the transition from the (ℎ − 1)th 

category to ℎ𝑏𝑏ℎ category of item i in latent class g, 𝛼𝛼𝚤𝚤𝑔𝑔������⃗  (𝛼𝛼𝚤𝚤𝑔𝑔������⃗ = (𝛼𝛼𝑖𝑖1𝑔𝑔,𝛼𝛼𝑖𝑖2𝑔𝑔)) denote class-specific 
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item slope parameters for two dimensions for item i in latent class g, and 𝑞𝑞𝚤𝚤���⃗   (𝑞𝑞𝚤𝚤���⃗ = (𝑞𝑞𝑖𝑖1,𝑞𝑞𝑖𝑖2)) 

denote the binary entries representing whether the item calls on a certain skill (obtained from the 

Q-Matrix).  

Note that, the equation above is the same as the one derived for mixture  

IRT models described in Chapter 2 (Equation 2.13). However, the multilevel modeling structure 

originates from how the marginal probability of the latent class variable (g) depends on the 

observed clustering variable (s) as shown below. 

 𝑃𝑃(𝑔𝑔) = 𝜋𝜋𝑔𝑔 = �𝑃𝑃(𝑠𝑠)
𝑠𝑠

�𝑃𝑃(𝑔𝑔|𝑠𝑠)
𝑔𝑔

 , (3.23) 

when it is assumed that a student’s observed responses to the items depend on their underlying 

latent class membership (g) and their underlying latent trait only (�⃗�𝜃),  

 𝑃𝑃(�⃗�𝑥) = �𝑃𝑃(𝑔𝑔)
𝑔𝑔

�𝑃𝑃��⃗�𝜃|𝑔𝑔�
𝜃𝜃��⃗

𝑃𝑃��⃗�𝑥|�⃗�𝜃,𝑔𝑔� . (3.24) 

Also note that, 𝑃𝑃(𝑔𝑔) = 𝜋𝜋𝑔𝑔 is the proportion of the group (i.e., latent class) within the 

population (also called mixing proportion or class size). In this study, the model was constrained 

to have two latent classes (𝑔𝑔 ∈ {1,2}) with respect to each of the two dimensions (i.e., math self-

efficacy and math proficiency) within each school. 

Similar to the MIRT models, students’ underlying latent traits were estimated by using 

expected a posteriori (EAP or Bayes Mean Estimate) (Bock & Aitkin, 1981; Bock & Mislevy, 

1982); that is, the mean of the posterior distribution resulting from the estimation process was 

used as the final estimate (𝜃𝜃�). Standardized ability estimates were obtained directly from the 
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mdltm output. Moreover, correlations between latent traits, which are estimated jointly within the 

MLMixMIRT estimation, were also obtained directly from the mdltm output. Because there were 

two latent classes in the model, correlations between math proficiency and math self-efficacy 

were estimated separately for each latent class. As a result, a pair of correlation estimates were 

obtained for each country in the dataset.  

The distribution (across countries) of correlation estimates, for each class, of the within-

country relationships between math self-efficacy and math proficiency was then examined. It 

was expected that, for each class, the distribution would exhibit smaller variance in comparison 

to the distributions obtained in the first three phases of the analyses. In other words, when both 

measurement error and clustering area accounted for, country-specific correlation estimates were 

expected to be more similar across countries. In addition, the patterns in within-country 

relationships in relation to country-level proficiencies were examined to ascertain whether they 

were changed after accounting for both the clustering and the measurement error in the data. It 

was hypothesized that with more accurate correlation estimates, a weaker association between 

within-country relationships and country-level averages of proficiency would be found in 

comparison to those seen in the first three phases. The two latent classes resulting from the 

estimates of the MLMixMIRT models were expected to offer more insights regarding any 

patterns observed in within-country relationships, as well as their relationships to country-level 

proficiencies. 

Furthermore, since the MLMixMIRT estimates may differ from the conventional 

estimates and MLM estimates obtained from models that did not treat measurement error 

appropriately, the magnitudes of the changes at the country level were examined in terms of the 

magnitude of the measurement error at the country-level. Similar to the Phase 2 with MIRT 
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models, EAP reliability indices were used as an indicator of the amount of measurement error in 

the data. Because there were two latent classes, four EAP reliability indices were calculated; two 

for math self-efficacy for each latent class and two for math proficiency scale for each latent 

class. Country-level EAP reliabilities were examined in relation to the changes in the correlation 

estimates from the conventional estimates obtained in Phase 1 and from the MLM estimates 

obtained in Phase 2 to the estimates obtained to MLMixMIRT models in Phase 4. Because 

measurement error could be a source of attenuation affecting within-country correlations, greater 

changes were expected when the measurement error was larger and properly taken into account. 

In addition, if MLMixMIRT estimates differed in comparison to conventional estimates and 

MIRT estimates obtained from models that did not treat the clustering properly, the magnitudes 

of the changes at the country level were examined in terms of country-level between-school 

variances (i.e., ICCs) that were gathered in Phase 3. The changes were expected to be greater for 

the countries where the differences among schools were larger and the conventional correlation 

estimates and MIRT estimates were less accurate. 

Phase 5: Refinement at the School-level Within-countries 

Previous phases of the study tackled both measurement error and clustering in the data in 

a step-wise manner because both of these statistical artefacts are present when the PISA data is 

analyzed at the country-level. As mentioned in Chapter 2, clustering of the data originates from 

the PISA study design, whereas various factors can play roles in introducing different amounts 

and distributions of uncertainty in the data. The impact of measurement error on the correlation 

estimates was of particular interest for this study and, therefore, it was investigated further in 

Phase 5.  
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It was conjectured that both the cognitive and non-cognitive measures from lower-

achieving countries were likely to incorporate greater uncertainty and, further, that country-level 

correlations between math proficiency and math self-efficacy were moderated by country mean 

math performance levels. Thus, the conventional correlation estimates obtained in Phase 1 

between math proficiency and math self-efficacy were expected to be weaker in lower achieving 

countries. Furthermore, when advanced modeling techniques that properly account for 

measurement error were employed, it was hypothesized that the attenuation resulting from 

measurement error in data would be mitigated and correlation estimates would be more similar 

across countries regardless of countries’ math achievement levels. In order to investigate if the 

relationships between math proficiency and math self-efficacy were moderated by math 

performance levels, school-level relationships within countries were examined to answer the 

research question: 

(RQ4) “Are the relationship patterns in school-level correlations and school-level 

proficiencies within countries similar to the patterns seen at the country-level?” 

When analyzed at the school-level, the PISA data is no longer clustered and the impact of 

measurement error on the estimates can be investigated directly. Hence, Phase 1 and Phase 2 of 

the model refinement process was repeated at the school-level for a selected set of countries 

exhibiting a wide range of country-level conventional correlations between the two variables of 

interest. It was expected that conventional correlations obtained from lower-achieving schools 

would be attenuated due to larger measurement error and, in analogy with country-level 

analyses, were lower than those in higher-achieving schools. Furthermore, when measurement 

error was taken into account, it was hypothesized that the correlation estimates would be more 

similar across schools within countries regardless of schools’ math achievement levels. 
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In order to carry out the selection, countries were ordered based on country-level 

conventional correlations and two countries were selected from each of the bottom, middle, and 

top quartiles: Kazakhstan (r OLS = 0.28), Jordan (r OLS = 0.29), Greece (r OLS = 0.48), Netherlands 

(r OLS = 0.48), Portugal (r OLS = 0.64), and Chinese Taipei (r OLS = 0.66).  Because the analyses 

were conducted at the school-level, schools with sample sizes smaller than 15 students were 

excluded so that sufficient within-school sample sizes could be ensured to support subsequent 

modeling procedures. The remaining sample included more than 100 schools in each country and 

the school sample sizes ranged from 15 to 27 students.  

Although the main goal of Phase 5 was to replicate country-level analyses at the school-

level, preliminary analyses revealed convergence issues with MIRT modeling at the school-level. 

These issues could not be resolved as there were too many parameters to be estimated, given the 

small sample sizes within schools. Therefore, as an alternative strategy, schools within each 

country were grouped based on their average math performances to conduct further analyses. It 

was expected that the convergence issues encountered when running complex models could thus 

be avoided. Although dividing the school sample in each country into a small number of school 

groups based on their math performances led to range restrictions in math proficiency, this could 

still address the hypothesis whether the correlations between math proficiency and math self-

efficacy were moderated by math proficiency level.  

Using the first plausible value of math proficiency (PV1MATH), schools within each 

country were ordered based on average mean math performance and grouped into nine “super-

schools”: schools falling into bottom 15% of the distribution were grouped into super-school 1, 

those in the top 15% were grouped into super-school 9, and the remaining schools were grouped 

into seven super-schools, each containing approximately 10% of the sample. In order to ensure 
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the comparability of average scores across schools, school-mean math performances were 

calculated by employing a new set of senate weights, which summed to 30 in each school. The 

number of schools within each super-school ranged from 13 to 32 across countries and the super-

school sample sizes ranged from 229 to 698 students. More details regarding the sample sizes by 

super-schools in each country are given in Appendix, Table A.4. 

After grouping schools within each country into nine super-schools, the relationship 

between students’ math self-efficacy and math performance was examined by fitting ordinary 

linear regression models as described in Phase 1. As shown in equations 3.3 to 3.7, five separate 

models were fit to the data from each super-school and Rubin’s method was employed for 

pooling the estimates for each super-school. Plausible values and the summary index for math 

self-efficacy were standardized within each super school before they were employed in the 

models. A new set of senate weights that summed to 1000 within each super-school were used in 

these models to make the super-schools comparable with each other. Resulting Pearson 

correlations between math proficiency and math self-efficacy were examined across super-

schools within each country. In addition, patterns observed within countries were compared 

across the six selected countries, in analogy with Phase 1. 

After obtaining the conventional correlation estimates within super-schools by fitting the 

OLS models, the MIRT models were fit to account for the uncertainty in both the cognitive 

outcome and the background measure as described in Phase 2. Senate weights that summed to 

1000 in each super-school were used in the models. The MIRT models employed the same Q-

matrix used in Phase 2 and Phase 4. Resulting correlations between two latent traits were 

compared across super-schools within each country and the patterns observed within countries 
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were compared across the six selected countries, in analogy with Phase 2. Finally, MIRT 

estimates were compared to those obtained from the OLS models.   

Phase 6: Refinement with a Composite Background Variable 

In this last phase of the analytical procedures, a composite background variable that 

comprised math-self-efficacy, math anxiety, and math self-concept was employed in order to 

examine whether using multiple indicators substantially reduced the impact of measurement 

error on correlation estimates. The research question that animated this phase of the study was: 

(RQ5) “When participants’ attitudinal background measure comprises multiple 

indicators (math-self-efficacy, math anxiety, and math self-concept), how different are 

the changes seen in the correlation estimates when clustering is taken into account 

compared to those seen when math self-efficacy is used as a single background 

measure?” 

As was mentioned earlier in this chapter, only one third of the sample could be employed 

in this phase due to the use of rotated design for the context questionnaire in PISA 2012. More 

details on within-country sample sizes are given in Appendix, Table A.5. 

The composite variable was created by conducting principal component analysis (PCA). 

In PCA, correlated variables are linearly combined into a set of uncorrelated variables (i.e., 

orthogonal principal components). This way, data can be plausibly summarized by fewer 

variables that are statistically distinct from one another and account for a substantial fraction of 

the variance. The first principal component is that linear combination of observed variables with 

maximal variance. Here, the first principal component resulting from the PCA procedure was 

used as the composite background measure. Although employing a composite indicator as the 

background measure instead of the math self-efficacy measure alone implicitly constitutes a 
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change in the construct with a different substantive interpretation, this procedure was proposed 

primarily as a methodological investigation. 

PCA was conducted within each country using the FactoMineR package (Le et al., 2008) 

in R, which allowed the use of senate weights. Note that a new set of senate weights was 

calculated since only one third of the sample could be employed in this phase due to the rotated 

design of the context questionnaires as described previously. In order to obtain a score resulting 

from the first principal component for each student in the dataset, students’ missing responses to 

each item were replaced by the average response value of the corresponding item3. Phases 1 and 

3 were repeated by employing the composite measure in the models as the background variable. 

Because only one third of the sample could be employed in this phase, phases 1 and 3 were 

repeated on the same one third of the sample to be able to make direct comparisons between 

estimates obtained from models employing the composite measure and those obtained from 

models employing math self-efficacy measure alone. Correlation estimates from the two models 

were then compared. Moreover, conventional estimates and MLM estimates that were obtained 

in this phase with the composite measure in the models were compared with each other to 

examine whether the changes in the estimates from the OLS to MLM were less pronounced 

when the background measure comprised multiple indicators. 

  

                                                 
3 This procedure is provided by default in the FactoMineR package. The uncertainty is underestimated when missing 
data is replaced by the mean. 
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Chapter 4: Results 

In this chapter, the results of the analyses are presented. As outlined in Chapter 3, the 

analyses were undertaken in six phases:  

• Phase 1: Conventional Analysis of Within-Country Relationships (Baseline) 

• Phase 2: Refinement with Multidimensional IRT Modeling (Step 1) 

• Phase 3: Refinement with Multilevel Linear Modeling (Step 2) 

• Phase 4: Refinement with Multilevel Multidimensional Mixture IRT Modeling (Step 3) 

• Phase 5: Refinement at the School-level Within-countries 

• Phase 6: Refinement with a Composite Background Variable 

4.1 Phase 1: Conventional Analysis of Within-Country Relationships 

In the first phase of the analyses, ordinary regression models were fit to data from each 

country separately and within-country correlation estimates between math proficiency and math 

self-efficacy scores available in the public use data were gathered as the baseline for 

comparisons across models in the model-refinement process. These conventional correlation 

estimates were found to be positive in all sixty-one countries but showed substantial variation 

across countries ranging from 0.15 (Colombia) to 0.66 (Chinese Taipei). This suggests that there 

are countries where a student’s math self-efficacy is only weakly associated with their math 

proficiency. The interquartile range (IQR) of the distribution was 0.216. The distribution of the 

correlation estimates was observed to be bimodal with two distinct peaks; a group of estimates 

clustered around 0.3 and a group clustered around 0.5. There were more countries with larger 

correlation estimates and the overall distribution was negatively skewed. Descriptive statistics 
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and the histogram of the distribution of the conventional correlation estimates are presented 

below. 

Table 4.1. Descriptive statistics for the within-country conventional correlation estimates from 
OLS models 

Correlations mean SD min median max range skewness IQR  

Conventional 0.458 0.133 0.151 0.501 0.664 0.514 -0.682 0.216 
 

 
Figure 4.1. Distribution of the within-country conventional correlations 

 

It was also of interest to examine whether the attitude-achievement paradox held true 

when the data were aggregated to the country level. Since all within-country correlation 

estimates were found to be positive in this study, a negative correlation between country-mean 

math proficiencies and country-mean math self-efficacy indices would indicate a reversal in the 
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relationship. Pearson correlation between country-mean math proficiencies and country-mean 

math self-efficacy indices was found to be positive (r=0.55), which indicates that the attitude-

achievement paradox was not found for this relationship in PISA 2012. However, there were 

outliers as shown in Figure 4.2 below. For instance, Japan and Korea demonstrated low math 

self-efficacy despite their high math performance. Jordan and Kazakhstan, on the other hand, 

demonstrated higher math self-efficacy despite their lower math performance. 

 
Figure 4.2. Relationship between country-mean math performance and math self-efficacy 
 

When the relationship between conventional correlation estimates and country-mean 

math performances was examined, the correlations in lower achieving countries were found to be 

smaller compared to higher achieving countries. In addition, the relationship between correlation 

estimates and country-mean math proficiencies was approximately linear up to 475 for country-
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mean math performance. In higher achieving countries (country-mean math performances above 

475), the relationship was weakened, approaching an asymptote of about 0.55. (Figure 4.3). 

 
Figure 4.3. Relationship between within-country conventional correlations and country-

mean math proficiencies 
 

As seen from the graph above, conventional correlation estimates between math 

proficiency and math self-efficacy were larger and more similar in countries (e.g., France, 

Canada, and Finland) with mean-math performance above 475. In order to more closely examine 

to what extent country-mean math performance moderates the within-country correlations 

between proficiency and math self-efficacy, a score of 475 was set as a cutoff for country-mean 

math performance. Pearson correlations between country-mean math performances and within-

country correlation estimates between math self-efficacy and math proficiency were examined 

separately for countries above and below the cutoff. 
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Figure 4.4. Relationship between within-country conventional correlations and country-

mean math proficiencies 
 

Figure 4.4 above displays that conventional correlation estimates varied substantially in 

lower achieving countries and there was a strong correlation (r (low) = 0.82) between country-

mean math performances and within-country correlation estimates. However, for countries with 

mean math performance higher than 475, this relationship was considerably weaker (r (high) = 

0.28).  

4.2 Phase 2: Refinement with Multidimensional IRT Modeling 

In the second phase of the analyses, multidimensional IRT modeling was used to account 

for the measurement error in the data and enable estimates of correlations on the latent variable 

level. Two-dimensional IRT models were fit to the item response data in a confirmatory manner; 
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that is, math proficiency items and math self-efficacy items were assigned to two separate 

dimensions in the estimation. As described in Chapter 3, correlations between latent traits are 

estimated jointly within the multidimensional IRT estimation and this corrects the estimates for 

measurement error. The mdltm software (von Davier, 2005b) provides directly estimated 

correlations among latent variables and these are named “skill distribution correlations” in the 

output. 

In order to obtain within-country correlation estimates separately for each country in the 

dataset, a multi-group 2PL MIRT model was fit to the full dataset. To examine and ensure the 

model-data fit, the model was fit twice. First, item parameters were allowed in the models to 

differ for each country so that no measurement invariance was assumed. Secondly, item 

parameters were forced to be equal across countries with an assumption that the scales performed 

similarly across the countries irrespective of where students’ were from. The two models were 

then compared to examine if measurement invariance can be assumed for the data. Three model-

fit indices were used as the criteria for model selection; Akaike Information Criterion (AIC), 

Bayesian Information Criterion (BIC), and Likelihood. The model-fit indices as well as the total 

number of parameters estimated in each model are presented below.  

Table 4.2. Model fit indices for the MIRT models 

 AIC BIC Likelihood Number of parameters  

Country-specific parameters 2650915 2772274 -1312030 13,428  

Equal parameters 2620723 2627501 -1309611 750  

 

For all three model-fit indices, smaller values indicate better goodness of fit for the model 

and the data. As seen in the table above, all three model-fit indices decreased in size only slightly 
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in the more constrained model with equal item parameters across countries. Although a less 

constrained model should provide a better fit to the data, model-fit indices panelize complexity 

to avoid overfitting. The model with country-specific parameters had 13,428 free parameters to 

be estimated, substantially less parsimonious in comparison to the model with equal parameters. 

As a result, the model-fit indices suggested an improvement, albeit small, in the model when the 

equal parameter constraints were imposed. For instance, consistent with this argument, BIC 

penalizes model complexity more heavily and the decrease in the BIC values were larger in 

comparison to AIC and Likelihood. Therefore, the multi-group MIRT model was fit to the data 

by keeping the parameters equal across the countries. Models converged with no issues and 

estimated item parameters are presented in Appendix, Table A.8. 

Overall, within-country correlation estimates from the MIRT models were larger than the 

conventional estimates. The interquartile range of the MIRT estimates was found to be slightly 

narrower than the conventional estimates (0.195 and 0.216, respectively). However, correlation 

estimates still displayed substantial variability across countries ranging from 0.22 (Colombia) to 

0.71 (Portugal). Descriptive statistics of the MIRT correlation estimates are presented below. 

Table 4.3. Descriptive statistics for within-country correlation estimates from MIRT models 

Estimates mean SD min median max range skewness IQR 

Conventional 0.458 0.133 0.151 0.501 0.664 0.514 -0.682 0.216 

MIRT 0.530 0.130 0.224 0.576 0.712 0.488 -0.758 0.195 
 

As seen in Figure 4.5 below, the histogram of the correlation estimates were shifted to the 

right demonstrating larger values in comparison to the conventional correlation estimates. On the 

other hand, the shapes of the two distributions were similar, displaying bimodality and negative 
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skewness. This indicates that the changes in the estimates from the OLS models to the MIRT 

models were similar across countries in the dataset.  

 
Figure 4.5. Distribution of the within-country conventional correlations and MIRT 

correlations 
 

In order to ascertain that the patterns of relationships between math proficiency and math 

self-efficacy were comparable across models regardless of employing different sources of data 

(i.e., PVs vs. item response data) for the cognitive outcome, EAPs obtained from the MIRT 

models were compared to the first plausible value of math proficiency. The correlations between 

the first plausible values and the EAPs ranged from 0.78 to 0.93 with a median of 0.89 across 

countries. In addition, the association between the changes in the correlation estimates from OLS 

to MIRT and the correlations between PVs and EAPs was rather weak (-0.16). Therefore, it was 
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concluded that comparisons across models were not compromised by the use of different sources 

of data for the cognitive outcome. 

The relationship between country-mean math performances and correlation estimates was 

also similar to the results found in Phase 1. The relationship was still stronger for lower 

achieving countries but slightly weakened after taking measurement error into account by fitting 

MIRT models in comparison to conventional estimates (the slopes were 0.82 and 0.77, 

respectively). In higher achieving countries, the change in the relationship between country-

mean math performance and the correlation estimates between math proficiency and math self-

efficacy was relatively more noticeable. The relationship was weakened considerably in higher 

achieving countries in comparison to conventional estimates (the slopes were 0.05 and 0.28, 

respectively) and the slope was effectively zero.   
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Figure 4.6. Relationship between within-country MIRT correlations and country-mean 

math proficiencies 
 

With the use of MIRT models, the correlation estimates are corrected for the 

measurement error in the data so the changes in the estimates from ordinary regression models to 

MIRT models are expected. It was hypothesized that the changes in the correlation estimates 

from conventional models to MIRT models would be larger for countries with greater 

measurement error in the data. Although measurement error is not forced to be constant along the 

scale and a scale’s reliability is conditional on the ability estimate in the IRT framework, indices 

that could summarize the quality of estimation for the entire scale were needed to make such a 

comparison. To that end, EAP reliability (Adams, 2005) was used to examine the amount of 

measurement error in the data. For each country in the dataset, two EAP reliability indices were 

calculated; one for math self-efficacy and another for math proficiency scale. IRT-based 
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reliability indices are expected to be more accurate than conventional reliability estimates such 

as Cronbach’s alpha.  

As shown in Figure 4.7, the empirical reliability indices for math scale from the MIRT 

models were found to be considerably heterogeneous ranging from 0.69 (Indonesia) to 0.87 

(Chinese Taipei). The empirical reliability indices for the math self-efficacy scale from the 

MIRT models, on the other hand, were found to be larger and homogenous ranging from 0.77 

(Viet Nam) to 0.86 (Korea) (Figure 4.8). 

 

  
Figure 4.7. EAP reliabilities gathered from the MIRT models for the math scale 
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Figure 4.8. EAP reliabilities gathered from the MIRT models for the math self-efficacy 

scale 
 

The greater heterogeneity in the EAP reliabilities for the math scale suggested that the 

amount of measurement error in the math proficiency data varied considerably across countries. 

In order to better understand the changes in the estimates and their relationship to the amount of 

measurement error in the data, country-level EAP reliabilities for the math scale were examined 

in relation to the changes in the correlation estimates from Phase 1 to Phase 2. Because 

measurement error is a major cause of attenuation in the correlation estimates, greater changes 

were expected to be seen for the countries with larger measurement error and, thus, with lower 

reliabilities. However, demonstrated in the figure below, there is weak to no association between 

the changes in the correlation estimates and the EAP reliabilities for the math scale obtained 

from the MIRT models. 
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Figure 4.9. Relationship between EAP reliabilities for math proficiency from MIRT 

models and the changes in the correlation estimates from conventional to MIRT models 
 

Although almost no association was found between EAP reliabilities for math proficiency 

measure and the changes in the correlation estimates between math proficiency and math self-

efficacy from conventional analyses to MIRT model, it was expected that math proficiency scale 

carried larger amount of measurement error in lower achieving countries due to reasons such as 

higher tendencies of straightlining behavior. Therefore, the EAP reliabilities for the math 

proficiency scale were investigated in relation to country-mean math proficiencies. The 

distribution below demonstrates that the EAP reliabilities for the math proficiency scale for 

countries with average math proficiency score below 475 were much weaker and more 

heterogeneous. The math scale carried a smaller amount of measurement error in higher 

achieving countries. 
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Figure 4.10. Distribution of the EAP reliabilities gathered from the MIRT models for the 

math scale by country math performance level 
 

The scatterplot below also demonstrates that there was a strong relationship between 

within-country EAP reliability indices for math proficiency scale gathered from the MIRT 

models and country-mean math proficiencies in lower achieving countries (r (low) = 0.92). The 

strong relationship between empirical reliability estimates and math proficiency in lower 

achieving countries was found to be positive and linear. That is, the reliability of the math 

proficiency scale was lower for more poorly performing countries. A similar, but somewhat 

weaker, relationship was observed in higher achieving countries (r (high) = 0.58). It should also be 

noted that EAP reliabilities for the math proficiency measure were more homogeneously 

distributed in higher achieving countries, ranging between 0.83 (Latvia) to 0.87 (Chinese Taipei).  
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Figure 4.11. Relationship between empirical reliability indices for math proficiency from 
MIRT models and country-mean math proficiencies 

 

Even though the EAP reliabilities for the math self-efficacy scale did not vary 

substantially across the countries, a similar investigation was followed to examine whether there 

was a relationship between the reliabilities and country-mean math performance. In contrast to 

the EAP reliabilities for the math scale, the distribution of the EAP reliabilities for the math self-

efficacy scale was more heterogeneous in higher achieving countries.  
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Figure 4.12. Distribution of the EAP reliabilities gathered from the MIRT models for the 

math self-efficacy scale by country math performance level 
 

As presented in the scatterplot below (Figure 4.13), the relationship between within-

country EAP reliabilities for math self-efficacy scale and country-mean math proficiencies in 

lower achieving countries was found to be positive but weaker (r (low) = 0.24) and somewhat non-

linear. In higher achieving countries, math self-efficacy scale reliabilities were much more 

heterogeneous in comparison to the math scale reliabilities. Note that Singapore, which showed 

one of the highest reliabilities for the math scale, demonstrated the second lowest reliability 

(0.78) for math self-efficacy scale among all the countries in the dataset after Vietnam (0.77). 

With Singapore having the highest country-mean math proficiency across all countries but 

showing the second lowest reliability for math self-efficacy scale, the relationship between 

within-country math self-efficacy reliabilities and country-mean math proficiencies was found to 

be negative but effectively zero (r (high) =  -0.02) in higher achieving countries. 
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Figure 4.13. Relationship between empirical reliability indices for math self-efficacy 
from MIRT models and country-mean math proficiencies 

 

Within-country EAP reliabilities for the math self-efficacy scale were also examined with 

respect to their association with county-mean math self-efficacy indices. Presented in Figure 

4.14, a strong and negative relationship was observed between country-mean math self-efficacy 

and within-country math self-efficacy scale reliabilities in higher achieving countries (r (high) = -

0.55). For example, in Japan and Korea, students’ showed the lowest level of math self-efficacy 

(-0.41 and -0.36, respectively) across all the countries participated in PISA 2012 but showed the 

highest empirical reliabilities for the math self-efficacy scale (0.85 and 0.86, respectively). These 

two countries were among the higher performing countries at math with mean math proficiency 

scores of 536 and 554 respectively. Consistent with these results, students from Singapore 

showed the highest level of math self-efficacy (0.50) but the EAP reliability from the MIRT 
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model was the second lowest (0.78) among all countries in the dataset, same as Indonesia (0.78) 

after Vietnam (0.77). In countries with lower performance in math, the pattern of relationship 

between math self-efficacy reliabilities and mean math self-efficacy indices was almost flat but 

slightly positive (0.04). 

 

Figure 4.14. Relationship between empirical reliability indices for math self-efficacy 
from MIRT models and country-mean math self-efficacy indices 

 

In order to further investigate potential factors behind the differences in MIRT correlation 

estimates across countries, correlation estimates were plotted against empirical reliabilities 

obtained from the MIRT models. Figure 4.15 below displays the relationship between within-

country reliabilities for the math scale and the MIRT correlation estimates. Both MIRT estimates 

and empirical reliabilities for math scale were smaller for lower achieving countries in 

comparison to higher achieving countries, and MIRT estimates were typically larger when the 



104 
 

estimated reliabilities for the math scale were greater (r (low) = 0.78). Although the distribution of 

MIRT estimates was more homogenous in higher achieving countries and the range of the 

reliabilities was narrower, a positive, albeit weaker, relationship was observed between the 

correlation estimates and the reliabilities for the math scale (r (high) = 0.25).  

 
Figure 4.15. Relationship between empirical reliability indices for math from MIRT 

models and MIRT correlation estimates 
 

The relationship between the MIRT correlation estimates and the reliabilities for the math 

self-efficacy scale was similar but weaker for both higher and lower achieving countries. 

Although the distributions of the reliabilities for the math self-efficacy scale covered almost the 

same range in both higher and lower achieving countries, the MIRT estimates for the lower 

achieving countries were typically larger when the estimated reliabilities for the math self-
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efficacy scale were greater (r (low) = 0.47). The slope was almost flat in higher achieving countries 

but still positive (r (high) = 0.16).  

 
Figure 4.16. Relationship between empirical reliability indices for math self-efficacy 

from MIRT models and MIRT correlation estimates 
 

4.3 Phase 3: Refinement with Multilevel Linear Modeling 

In the next phase of the model refinement process, clustering of the data resulting from 

the PISA survey design was taken into account by employing two-level linear modeling. When 

data are collected from individuals who are clustered in groups by design or by the nature of the 

research context, it is critical to account for this nested design in statistical analyses. Although 

the PISA research design suggests such a hierarchical structure in the data due to the multi-stage 

sampling technique used to obtain representative samples of students from sampled schools in 
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participating countries, one has to look for evidence of nesting in the data first to ensure that 

multilevel modeling is an appropriate choice. To this end, sixty-one sets of unconditional two-

level linear models were fit to the data (one for each country) to investigate the proportion of 

total variance in students’ math performance that could be attributed to the variability among 

schools within the country (i.e., intra-class correlation or ICC). Note that no predictors were 

included in unconditional models but separate models for each level in the data (e.g., school- and 

student-level) allowed for examination of the residuals separately at each level.  

 
Figure 4.17. Distribution of the within-country ICCs for the math performance outcome 

 

As shown in Figure 4.17, within-country ICCs varied substantially across participating 

countries. Finland displayed the smallest intra-class correlation of 0.07, indicating that only 7% 

of the variance among students’ math performance could be explained by school-related factors 

instead of individual differences. Data from Hungary showed the highest ICC of 0.65 which 
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indicates that 65% of the variance in students’ math performance were due to the factors related 

to schools and not students’ individual differences. Overall, the ICCs were larger than 15% in 

most of the countries. Therefore, multilevel modeling was an appropriate model choice. 

For the next step of this phase, a second set of two-level linear models in which student 

math self-efficacy index was added as a covariate at the student-level was fit to the data from 

each of the sixty-one participating countries. The distribution of standardized regression 

coefficients as correlation estimates of the within-country relationships between math self-

efficacy and math proficiency were examined.  

Overall, within-country correlation estimates from the MLM models were smaller than 

both the conventional estimates and the MIRT estimates. The interquartile range of the MLM 

estimates was found to be slightly larger than the one obtained from the conventional estimates 

(0.224). Correlation estimates still showed substantial variability across the countries. 

Descriptive statistics of the MLM correlation estimates are presented below.  

Table 4.4. Descriptive statistics for within-country correlation estimates from MLM models 

Estimates mean SD min median max range skewness IQR 

Conventional 0.458 0.133 0.151 0.501 0.664 0.514 -0.682 0.216 

MIRT 0.530 0.130 0.224 0.576 0.712 0.488 -0.758 0.195 

MLM 0.350 0.132 0.105 0.371 0.583 0.477 -0.106 0.224 
 

As seen in the histogram below, the correlation estimates were shifted to the left 

displaying smaller values in comparison to the conventional correlation estimates. Note that this 

is the reverse of the shift observed with the MIRT models. Moreover, the shape of the 

distribution was slightly different. For example, the bimodality that was seen in Figure 4.1 
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almost disappeared and the distribution was not skewed towards larger values as seen in Figure 

4.18.   

 
Figure 4.18. Distribution of the within-country conventional and MLM correlations 

 

Similar to the previous phases of model refinement, the relationship between the 

correlation estimates and country-mean math proficiencies was examined. The relationship was 

still stronger for lower achieving countries (r (low) = 0.71) but slightly weakened in comparison to 

conventional and MIRT estimates (the slopes were 0.82 and 0.77, respectively). In higher 

achieving countries, the slope of the relationship with country-mean math performance was 

effectively zero (r (low) = -0.04), similar to the one for the MIRT estimates.  
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Figure 4.19. Relationship between within-country MLM correlations and country-mean 
math proficiencies 

 

With multilevel linear modeling, the changes in the correlation estimates were due to 

taking the clustering in the data into account. Therefore, it was reasonable to expect a strong 

relationship between within-country ICCs and the changes in the estimates from conventional 

analyses to MLM. As plotted below, the changes were larger for countries with large ICCs. 

Furthermore, the relationship was approximately linear with a negative slope (-0.79). That is, the 

correlation estimates got smaller as the ICC got larger, as is to be expected. For example, the 

correlation between students’ math performance and math self-efficacy almost stayed the same 

for Finland, as it had the smallest ICC across all countries in the dataset. By contrast, Hungary, 

with the largest ICC, had the largest change in the correlation estimate from conventional 
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analyses to MLM (a decrease of 0.27). This suggests that for students from Hungary, the school 

a student attended made a big difference in their math performance. 

 

Figure 4.20. Relationship between changes in the correlation estimates from OLS to 
MLM and within-country intra-class correlations for math proficiency outcome 

 

4.4 Phase 4: Refinement with Multilevel Multidimensional Mixture IRT Modeling 

As the final step of the model refinement process, multilevel two-dimensional mixture 

IRT models were fit to the data from each country in the dataset to account for both 

measurement error and clustering. Similar to the MIRT models, the models were conducted in a 

confirmatory manner to incorporate the multidimensionality. The 117 x 2 Q-matrix that was 

developed in Phase 2 to fit the MIRT models was used to assign each item to one of the two 

dimensions. The models were constrained to have two latent classes and no measurement 
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invariance was assumed between the two latent classes. Moreover, the models were fit separately 

for each country and, thus, no measurement invariance was assumed across countries either. As a 

result, class-specific item parameter sets were estimated separately and allowed to differ from 

country to country. Similar to the MIRT models, students’ underlying latent traits were estimated 

by using expected a posteriori (EAP) and standardized ability estimates were obtained directly 

from the mdltm output. There were no convergence issues. 

In mixture-distribution IRT modeling, the models classify individuals into the pre-

defined number of latent classes based on maximizing within-class homogeneity and between-

class heterogeneity in their responses to the items. That is, similarities and differences among 

individuals are taken into account without knowing what leads to those differences. In cases 

where the researcher has an underlying theory for the research context, the models can be 

interpreted in a confirmatory way to examine whether the data supports the hypotheses regarding 

the underlying subpopulations. A similar approach was followed in this study. Although the 

underlying reasons were not known, it was hypothesized that the students would be split into two 

latent classes based primarily on their math performance level. The results from the 

MLMixMIRT models supported this hypothesis. Consistently for each country, the models 

yielded two latent classes that differed from each other by substantial differences in mean EAP 

math ability estimates.  

Table 4.5. Descriptive statistics for the within-country mean EAP math ability estimates by 
latent classes 

Latent Class mean SD min median max range skewness IQR 

High Math Class -0.080 0.465 -1.087 0.007 0.944 2.031 -0.207 0.619 

Low Math Class -0.972 0.564 -2.467 -0.914 0.246 2.714 -0.127 0.746 
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Figure 4.21. Distribution of within-country mean math performance by latent class 

 

As can be seen from the descriptive statistics given in Table 4.5, one of the latent classes 

from the MLMixMIRT models displayed consistently lower math performance ranging from -

2.47 (Hungary) to 0.25 (Chinese Taipei) than the other latent class with ranged from -1.09 

(Indonesia) to 0.94 (Singapore) within each country. Moreover, the latent classes with higher 

mean math performance were more homogenous than the latent class with lower math 

performance estimates. Figure 4.21 demonstrates the distribution of the two latent classes by 

mean math ability estimates. Although the two distributions overlapped, the distinction between 

two latent classes was clear. Based on these results, two estimated latent classes from the 

MLMixMIRT models were labelled as “High Math Class” and “Low Math Class” (or 

“MLMixMIRT_High” and “MLMixMIRT_Low” when results from different models were 
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compared) and the rest of the results from the analyses of the MLMixMIRT models were 

interpreted accordingly. 

The correlations between math proficiency and math self-efficacy are estimated jointly 

within the MLMixMIRT estimation. Because there were two latent classes defined in the model, 

correlations between the two latent traits were estimated separately for each latent class within 

this modeling framework. As a result, two correlation estimates were obtained for each country. 

The distributions of the correlation estimates for both latent classes were examined in 

comparison to those that were obtained from other models employed in previous stages of the 

study. The correlations between math proficiency and math self-efficacy varied substantially for 

the Low Math Class across participating countries. On the other hand, the distribution of the 

correlation estimates was much more homogeneous for the High Math Class. Descriptive 

statistics of the MLMixMIRT correlation estimates for each latent class, as well as the 

histograms for the distributions, are presented below along with those that were obtained in 

previous stages of the model refinement process.  

Table 4.6. Descriptive statistics for within-country correlation estimates from MLMixMIRT 
models 

Estimates mean SD min median max range skewness IQR 

Conventional 0.458 0.133 0.151 0.501 0.664 0.514 -0.682 0.216 

MIRT 0.530 0.130 0.224 0.576 0.712 0.488 -0.758 0.195 

MLM 0.350 0.132 0.105 0.371 0.583 0.477 -0.106 0.224 

MLMixMIRT         

High Math Class 0.560 0.089 0.319 0.571 0.733 0.414 -0.431 0.109 

Low Math Class 0.247 0.221 -0.106 0.254 0.700 0.806 0.108 0.368 
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Figure 4.22. Distribution of the within-country conventional and MLMixMIRT 

correlations 
 

The descriptive statistics suggest that correlation estimates for the High Math Class were 

considerably larger than those obtained for the Low Math Class. In several countries such as 

Bulgaria and Peru, students’ math performance was found to be negatively correlated with their 

math self-efficacy level in the Low Math Class (the correlation estimates were -0.11 and -0.10, 

respectively). However, in certain countries, the correlation for the Low Math Class was as large 

as those obtained for the High Math Class in other countries. For instance, in Chinese Taipei, the 

correlation estimates for both latent classes were very similar (0.73 for High Math Class and 0.70 

for Low Math Class) and were the highest across all countries. Note that the mean math ability 

estimate for the Low Math Class was almost equal to the one for the High Math Class in Chinese 

Taipei (0.25 and 0.27, respectively) and was the highest across all countries. 
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The correlation estimates for the High Math Class resulting from the MLMixMIRT 

models were substantially more homogeneous and larger (mean = 0.56) in comparison to those 

obtained from OLS, MIRT and MLM models. On the other hand, the correlation estimates for 

the Low Math Class varied substantially and were generally smaller (mean = 0.25) in 

comparison to the models employed in previous stages of the model refinement process.  

Similar to the previous phases in the model refinement, the relationship between the 

correlation estimates and country-mean math proficiencies was examined. Different from the 

previous phases, the relationship with country-mean math proficiencies were examined 

separately for each latent class instead of using the cutoff for the mean math proficiency score of 

475. Because the MLMixMIRT models yielded two latent classes and these latent classes were 

interpreted as high math proficiency and low math proficiency classes, it was considered to be 

more appropriate and simpler for the interpretation to examine the association between math 

performance level and the correlation estimates between math self-efficacy and math proficiency 

separately for each of the latent classes. 

As plotted in the figure below, the relationship between country-mean math performance 

and the correlation estimates was approximately linear for both classes, but much stronger for the 

Low Math Class in comparison to the High Math Class (the slopes were 0.85 and 0.32, 

respectively). 
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Figure 4.23. Relationship between within-country MLMixMIRT correlations and country-
mean math performance 

 

In order to make a comparison that is more analogous to the previous phases, the 

relationship between country mean math performances and the correlation estimates obtained 

from the MLMixMIRT models was examined more closely for each latent class by using the 

math proficiency score of 475 as a cutoff for country math performance level. The table below 

summarizes the relationships observed across all models employed in this study along with the 

sample sizes. 
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Table 4.7. Pearson correlation between within-country correlation estimates and country-level 
math performance 

 Math performance level based on the cutoff of 475 
Overall (N=61) 

Estimates Low (N=24) High (N=37) 

Conventional 0.82 0.28 0.88 

MIRT 0.77 0.05 0.85 

MLM 0.71 -0.04 0.76 

MLMixMIRT    

High Math Class 0.36 0.02 0.32 

Low Math Class 0.68 0.56 0.85 
 

The table above clearly demonstrates that when countries’ math performance levels 

(based on 475 cutoff) were ignored, correlation estimates from the OLS, MLM, and MIRT 

models were strongly associated with country-mean math performance (the slopes were 0.88, 

0.85, and 0.76, respectively). However, when examined more closely by splitting the countries 

into two groups based on their average math performance (below or above 475), it was observed 

that the relationship was different for low- and high-achieving countries (e.g., the slopes were 

0.82 and 0.28, respectively, based on conventional analyses). For the first three models, this 

grouping had to be based on average math performance scores by using 475 as the cutoff because 

all students were assumed to belong to the same population (i.e., no subpopulations and no 

mixture distributions). When MLMixMIRT was employed, the results were consistent. Even in 

higher achieving countries, the Low Math Class yielded a stronger relationship between mean 

math performance and correlation estimates in comparison to the High Math Class (the slopes 

were 0.56 and 0.02, respectively).  
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When MLMixMIRT estimates were examined in relation to class-mean math ability 

estimates rather than overall country-mean math proficiencies, a somewhat similar pattern was 

observed. Displayed in Figure 4.24 below, class-mean math ability estimates were positively 

correlated with MLMixMIRT estimates for Low Math Class and the relationship was stronger 

and approximately linear (r (Low Math) = 0.73). In High Math Class, however, the relationship was 

almost curvilinear; the correlation estimates peaked around the class mean math proficiency of 

zero but were smaller on either side of the distribution. 

 
Figure 4.24. Relationship between within-country MLMixMIRT correlations and class-

mean math performance  
 

In the MLMixMIRT models, the correlation estimates are corrected for both the 

measurement error and the clustering in the data. Similar to the MIRT models, the EAP 

reliability indices obtained from the MLMixMIRT models were examined. As demonstrated 



119 
 

below, EAP reliabilities for the math scale were larger and more homogeneous for the High 

Math Class than those for the Low Math Class. However, the High Math Class for Colombia and 

Sweden showed very low EAP reliabilities (0.08 and 0.28, respectively). 

  
Figure 4.25. Distribution of within-country EAP reliabilities for math scale from the 

MLMixMIRT models by latent class 
 

For the math self-efficacy scale, the empirical reliabilities obtained from the 

MLMixMIRT models demonstrated a different pattern. In contrast to the math scale, math self-

efficacy scale reliabilities for the Low Math Class were larger and less homogeneous than those 

that were obtained for the High Math Class, which were relatively smaller and more 

homogeneous.   
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Figure 4.26. Distribution of within-country EAP reliabilities for math self-efficacy scale 

from the MLMixMIRT models by latent class 
 

In order to better understand the differences between the two latent classes with respect to 

the amount of measurement error, EAP reliabilities for each latent class were examined in 

relation to country-mean math performance level. Figure 4.27 below demonstrates that, overall, 

the relationship between country-mean math performance and the EAP reliabilities for the math 

scale was linear for both latent classes but stronger for the Low Math Class in comparison to the 

High Math Class (the slopes were 0.84 and 0.40, respectively). However, this difference between 

the Low Math and High Math classes was more apparent for countries with mean math 

proficiency scores lower than 475. This suggests that in lower achieving countries, the difference 

in the amount of measurement error in students’ responses to the math assessment was larger 

between the Low Math Class and High Math Class. Note that Colombia and Sweden were 
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excluded in Figure 4.27 below due to having uncommonly low EAP reliabilities for the High 

Math Class. 

 

Figure 4.27. Relationship between within-country math reliabilities from the 
MLMixMIRT models and country-mean math performance (COL and SWE are not included) 

 

The relationship between reliabilities for the math scale was also examined with respect 

to class-mean math ability estimates obtained from the MLMixMIRT models. Displayed in 

Figure 4.28 below, a positive and approximately linear relationship was observed in Low Math 

Class (r (Low Math) = 0.85). In High Math Class, however, the relationship was curvilinear; the 

reliabilities for the math scale peaked around the class-mean math proficiency of zero but were 

smaller on either side of the distribution.  
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Figure 4.28. Relationship between within-country math reliabilities from the 
MLMixMIRT models and class-mean math performance (COL and SWE are not included) 

 

Similar to the findings for the math scale, the EAP reliabilities for the math self-efficacy 

scale were less heterogeneous for the Low Math Class in comparison to the High Math Class. 

However, in contrast to those obtained for the math scale, the reliabilities for the math self-

efficacy scale were larger for the Low Math Class. That is, the math self-efficacy scale 

demonstrated lower reliabilities in High Math Class. Moreover, when examined in relation to 

country-mean math performance, a negative relationship was observed in the Low Math Class (r 

(Low Math) = -0.35). Figure 4.29 below demonstrates that the math self-efficacy reliabilities were 

weaker as the country-mean math proficiencies increased for the Low Math Class. For the High 

Math Class, however, the slope was positive (r (High Math) = 0.40). Similar to the math scale 
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reliabilities, the difference between the two latent classes was more apparent for lower achieving 

countries with a country-mean math performance below 475.  

 

Figure 4.29. Relationship between within-country math self-efficacy reliabilities from the 
MLMixMIRT models and country-mean math performance 

 

When the estimated reliabilities for the math self-efficacy scale were examined in relation 

to class-mean math proficiency estimates, a somewhat similar pattern was observed. Although 

they were smaller in magnitude, the reliabilities were negatively correlated with class-mean math 

proficiencies in Low Math Class but positively correlated in High Math Class (the slopes were -

0.14 and 0.26, respectively). 
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Figure 4.30. Relationship between within-country math self-efficacy reliabilities from the 

MLMixMIRT models and class-mean math performance 
 

Within-country EAP reliabilities for the math self-efficacy scale were also examined with 

respect to their association with county-mean math self-efficacy indices. As presented below, a 

relatively weak and negative relationship was found for both Low Math and High Math classes 

(the slopes were -0.24 and -0.23, respectively). This suggests that the reliability of the math self-

efficacy was lower for countries with higher math self-efficacy index on average. Note that the 

EAP reliabilities for the math self-efficacy scale were more heterogeneous for the Low Math 

Class. Moreover, although the reliabilities were weaker for the High Math Class in general, this 

was not a consistent pattern across all countries. For example, for Singapore (0.47), which 

exhibited the highest average math self-efficacy index across countries, the scale reliability was 

weaker for the Low Math Class in comparison to the High Math Class (0.78 and 0.84, 

respectively). 
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Figure 4.31. Relationship between within-country math self-efficacy reliabilities from the 
MLMixMIRT models and country-mean math self-efficacy index 

 

In order to better understand the differences among math self-efficacy reliabilities across 

countries, math self-efficacy reliabilities were further examined in relation to class-mean math 

self-efficacy estimates instead of overall country-mean math self-efficacy indices. The 

distribution of class-mean math self-efficacy estimates are given in Figure 4.32. In contrast to 

class-mean math proficiency estimates, both latent classes demonstrated average math self-

efficacies that were mostly greater than zero. Moreover, even though most of the cases were 

grouped around class-mean of zero, there were several cases with rather large averages in both 

latent classes. For example, class-mean math self-efficacy for the High Math Class for Singapore 

was 4.12. Although the Low Math Class demonstrated slightly lower averages, there were cases 

such as Norway, which had an average of 4.72 math self-efficacy for the Low Math Class.  
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Figure 4.32. Distribution of within-country mean math self-efficacy by latent class 

 

Figure 4.33 below displays the relationship between class-mean math self-efficacies and 

empirical reliabilities for the math self-efficacy scale. Due to having uncommonly large class-

mean math self-efficacy estimates, nine countries (Hong Kong-China, Iceland, Jordan, Japan, 

Macao-China, Norway, Qatar, Singapore, and Chinese Taipei) with a class-mean math self-

efficacy that was larger than 2.5 for the High Math Class and larger than 2 for the Low Math 

Class were excluded. Note that empirical reliabilities for the countries that were excluded from 

the scatterplot were larger than 0.80. For both latent classes, a positive relationship was observed 

between class-mean math self-efficacies and empirical reliabilities. The relationship was stronger 

for the Low Math Class than the High Math Class (the slopes were 0.10 and 0.33, respectively).  
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Figure 4.33. Relationship between within-country math self-efficacy reliabilities from the 

MLMixMIRT models and class-mean math self-efficacy (across 52 countries – outliers excluded) 
 

It was hypothesized that when the reliabilities were lower, signaling a larger amount of 

measurement error, the correlation estimates would be attenuated. In order to test this hypothesis, 

the MLMixMIRT estimates were plotted against the reliability estimates for both math and math 

self-efficacy scales. Displayed in Figure 4.34, a strong and positive relationship was observed for 

both High and Low Math classes (the slopes were 0.64 and 0.87, respectively). Moreover, the 

relationships were linear; the MLMixMIRT estimates were larger as the math scale reliabilities 

increased.  
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Figure 4.34. Relationship between within-country math reliabilities from the 

MLMixMIRT models and MLMixMIRT correlation estimates (COL and SWE are not included) 
 

Figure 4.35, on the other hand, does not display a particularly clear pattern. Especially for 

the Low Math Class, many countries with the math self-efficacy scale reliabilities that were as 

large as 0.90 demonstrated rather small correlation estimates. There were also countries such as 

Croatia, which exhibited a moderately larger correlation between math proficiency and math 

self-efficacy even though the math self-efficacy scale reliability was the smallest in the Low 

Math Class. For the High Math Class, the slope was moderate but positive. 
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Figure 4.35. Relationship between within-country math self-efficacy reliabilities from the 

MLMixMIRT models and MLMixMIRT correlation estimates 
 

4.5 Phase 5: Refinement at the School-level Within-countries 

In order to investigate further the impact of measurement error on the correlation 

estimates and to what extent math proficiency may moderate the relationship between math 

proficiency and math self-efficacy, Phase 1 and Phase 2 of the model refinement process were 

repeated at the school-level for a set of countries exhibiting a wide range of country-level 

conventional correlations. To this end, six countries were selected: Kazakhstan (r OLS = 0.28), 

Jordan (r OLS = 0.29), Greece (r OLS = 0.48), Netherlands (r OLS = 0.48), Portugal (r OLS = 0.64), 

and Chinese Taipei (r OLS = 0.66). Due to convergence issues with MIRT modeling at the school-

level, an alternative strategy had to be followed. As described in Chapter 3, schools within each 

selected country were grouped into nine “super-schools” that were ordered based on mean math 
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proficiency. Schools falling into the bottom 15% of the distribution were grouped into super-

school 1, those in the top 15% were grouped into super-school 9, and the remaining schools were 

grouped into seven super-schools, each containing approximately 10% of the sample. . 

First, within each country, ordinary regression models were fit to data from each super-

school and within-super-school correlation estimates between math proficiency and math self-

efficacy were obtained as the baseline. Descriptive statistics for the distributions of conventional 

correlations for each country are presented below. 

Table 4.8. Descriptive statistics for the within-super-school conventional correlation estimates 
from OLS models 

Country mean SD min median max range skewness IQR  
Kazakhstan 0.24 0.07 0.10 0.26 0.33 0.22 -0.44 0.09 
Jordan 0.27 0.08 0.09 0.30 0.34 0.25 -1.16 0.06 
Greece 0.42 0.06 0.31 0.42 0.49 0.19 -0.48 0.07 
Netherlands 0.42 0.08 0.24 0.44 0.49 0.25 -1.31 0.06 
Portugal 0.58 0.05 0.46 0.60 0.62 0.17 -1.46 0.03 
Chinese Taipei 0.55 0.09 0.35 0.56 0.66 0.31 -0.87 0.07 

 

Countries with larger correlations at the country level exhibited larger correlations at the 

super-school level. For example, conventional correlations for Kazakhstan ranged from 0.10 to 

0.33 whereas they ranged from 0.35 to 0.66 for Chinese Taipei. Moreover, the maximum 

correlation estimate for the super-schools was close to the country-level correlation estimates for 

the top four countries with larger correlation estimates at the country-level. For instance, 

country-level conventional estimates were 0.66 and 0.64 for Chinese Taipei and Portugal and the 

maximum correlation estimates for the super-schools were 0.66 and 0.62, respectively. Although 

they differed in magnitude, the level of variation in the conventional estimates across super-
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schools was generally similar across countries. By contrast, for Portugal, the estimates were 

substantially less dispersed than those for the other five countries. However, even though 

country-level conventional correlations were very similar for Chinese Taipei and Portugal (0.66 

and 0.64, respectively), the estimates were more heterogeneous for Chinese Taipei. The 

histograms of the distributions of the conventional correlation estimates are presented below. 

 
Figure 4.36. Distribution of within-super-school conventional correlations by country 
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In order to examine the association between correlation estimates and math proficiency 

levels, averages of the first plausible value for math proficiency (PV1MATH) were used. As 

described in Chapter 3, in order to ensure the comparability, the average of the first plausible value 

for math proficiency for each super-school was calculated by employing a new set of senate 

weights that summed to 1000 within each super-school. Descriptive statistics for the weighted 

averages of math proficiency by country are presented in Table 4.9. Mean math proficiencies for 

super-schools in Jordan displayed the narrowest range whereas those for Chinese Taipei 

demonstrated the widest range in comparison to other countries.  

Table 4.9. Descriptive statistics for the weighted averages of PV1MATH for super-schools by 
country 

Country mean SD min median max range skewness IQR  
Kazakhstan 429 44 372 423 516 144 0.60 47 
Jordan 386 41 325 382 467 142 0.47 38 
Greece 460 46 365 468 527 162 -0.60 41 
Netherlands 528 70 415 527 624 209 -0.15 102 
Portugal 488 52 396 495 565 169 -0.29 59 
Chinese Taipei 557 72 441 554 686 244 0.15 80 

 

Figure 4.37 consists of six scatterplots displaying the relationships between conventional 

correlation estimates and weighted average of PV1MATH for super-schools by each country. 

Patterns observed at the super-school level were somewhat similar to those obtained from country-

level analyses. Except for Chinese Taipei, a positive and approximately linear relationship was 

observed; correlations between math proficiency and math self-efficacy were larger for higher 

achieving super-schools. In Chinese Taipei, on the other hand, a negative relationship was 
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observed (the slope was -0.69); correlations were weaker as the math proficiency level of the super-

school increased. Chinese Taipei was also the highest achieving country among selected countries. 

In particular, the weighted average of PV1MATH for super-school 9 in Chinese Taipei was the 

highest across countries and a substantial drop in correlation estimates was observed for super-

schools 8 and 9.  

 
Figure 4.37. Relationships between conventional correlations and mean math 

proficiencies 



134 
 

 

Next, multidimensional IRT modeling was employed to account for the measurement error 

in the data. Similar to Phase 2 analyses, two-dimensional IRT models were fit to the item response 

data from super-schools using the same Q-matrix. In order to obtain within-super-school 

correlation estimates separately for each super-school within each country, multi-group 2PL MIRT 

models were fit to the data from each country. Multi-group MIRT models were fit to the data by 

keeping the parameters equal across the super-schools within each country. 

Overall, correlation estimates from the MIRT models were larger than the conventional 

estimates, a pattern similar to that observed at the country level in Phase 2. For example, the 

minimum estimate obtained from the super-schools in Kazakhstan increased from 0.10 to 0.17 

and the maximum estimate increased from 0.33 to 0.43. However, correlation estimates still 

displayed substantial variability across super-schools within countries. In fact, MIRT correlation 

estimates were substantially more dispersed than conventional correlation estimates. In contrast 

to those obtained for the conventional estimates (Table 4.8), interquartile ranges of the estimates 

were doubled in all countries except for the Netherlands. These findings were inconsistent with 

the findings from Phase 2 as the MIRT estimates demonstrated a slightly narrower interquartile 

range than the conventional estimates when the data were analyzed at the country-level. 

Descriptive statistics of the MIRT correlation estimates are presented below in Table 4.10. 
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Table 4.10. Descriptive statistics for the within-super-school correlation estimates from MIRT 
models 

Country mean SD min median max range skewness IQR  
Kazakhstan 0.29 0.09 0.17 0.32 0.43 0.26 -0.11 0.16 
Jordan 0.34 0.14 0.05 0.37 0.48 0.43 -0.92 0.14 
Greece 0.49 0.08 0.33 0.50 0.58 0.25 -0.46 0.13 
Netherlands 0.47 0.09 0.29 0.49 0.60 0.31 -0.46 0.08 
Portugal 0.65 0.05 0.55 0.65 0.71 0.16 -0.60 0.06 
Chinese Taipei 0.58 0.08 0.45 0.55 0.69 0.24 0.01 0.14 

 

Displayed in Figure 4.38 below, the distributions of the correlation estimates were shifted 

to the right demonstrating larger values in comparison to the conventional correlation estimates. 

In contrast to those obtained from country-level analyses in Phase 2, the shapes of the 

distributions indicated that MIRT estimates were more heterogeneous in comparison to 

conventional estimates.  
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Figure 4.38. Distribution of within-super-school conventional correlations and MIRT 

correlations 
 

As displayed in Figure 4.39 below, similar to those obtained for the conventional 

estimates, a positive and approximately linear relationship between MIRT correlation estimates 

and mean math achievement was observed in all countries except for Chinese Taipei. Moreover, 

consistent with the country-level results obtained in Phase 2, the relationship was slightly 
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weakened after employing MIRT modeling for countries that demonstrated positive 

relationships. For instance, the slope of the relationship decreased from 0.59 to 0.44 in Portugal. 

For Chinese Taipei, on the other hand, the negative relationship that was observed between 

conventional correlation estimates and mean math achievement was effectively equal in 

magnitude when MIRT modeling was employed (i.e., the slopes were -0.69 and -0.71, 

respectively). 
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Figure 4.39. Relationships between MIRT correlations and mean math proficiencies 

 

Similar to Phase 2 and Phase 4, the EAP reliability indices obtained from the MIRT 

models were examined. As demonstrated below, EAP reliabilities for the math scale varied 

substantially across super-schools within countries as well as across countries. In particular, 

reliabilities were lower in Kazakhstan and Jordan. For super-schools in the Netherlands, the 

reliabilities were more homogenous in comparison to those observed in other countries. Super-
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school 1 (i.e., schools falling into bottom 15% of the distribution based on mean math 

achievement) in Greece as well as in Portugal demonstrated substantially lower reliabilities for 

the math scale whereas super-school 9 (i.e., schools falling into top 15% of the distribution based 

on mean math achievement) in Chinese Taipei exhibited a substantially lower reliability for the 

math scale. 

 
Figure 4.40. Distributions of EAP reliabilities gathered from the MIRT models for the 

math proficiency scale 
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When reliabilities for the math proficiency scale were examined in relation to mean math 

performance levels of the super-schools (Figure 4.41), a positive and approximately linear 

relationship was observed in most countries. The relationship was effectively zero in the 

Netherlands and Chinese Taipei (the slopes were 0.07 and 0.05, respectively). Note that super-

school 1 in Greece and Portugal, and super-school 9 in Chinese Taipei were excluded in the plots 

due to unusually low reliabilities. For Kazakhstan and Jordan, the two countries in the sample 

with lowest conventional correlations at the country-level, the relationship between the 

reliabilities for the math proficiency scale and mean math performance was quite strong (the 

slopes were 0.91 and 0.97, respectively). That is, super-schools with lower mean math 

performances demonstrated considerably lower reliabilities for the math proficiency scale. These 

findings were consistent with those found in Phase 2 and Phase 4. 
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Figure 4.41. Relationship between empirical reliability indices for math proficiency and 

mean math performance 
 

Reliabilities for the math proficiency scale were also examined in relation to the 

correlation estimates obtained from the MIRT models. The scatterplots in Figure 4.42 below 

display positive relationships in all countries, similar to those observed in Phase 2 and Phase 4. 

However, the relationship was considerably stronger for Kazakhstan, Jordan, and Greece (lower 
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achieving countries among all six countries). Note that super-school 1 in Greece and Portugal, 

and super-school 9 in Chinese Taipei were excluded in the plots due to unusually low 

reliabilities. 

 
Figure 4.42. Relationship between empirical reliability indices for math proficiency and 

MIRT correlation estimates 
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Distributions of the reliabilities for the math self-efficacy scale (Figure 4.43) were more 

homogenous in comparison to those for the math proficiency scale (Figure 4.40). On the other 

hand, larger variation was observed in Portugal and Chinese Taipei (higher achieving countries 

among all six countries). Moreover, similar to the reliabilities for the math proficiency scale, the 

super-school 9 in Chinese Taipei again exhibited low reliability. 

 
Figure 4.43. Distributions of EAP reliabilities gathered from the MIRT models for the 

math self-efficacy scale 
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When examined in relation to mean math performance, a negative and approximately 

linear relationship was observed in all countries. Figure 4.44 below shows that higher achieving 

super-schools possessed lower reliabilities for the math self-efficacy scale. Note that super-

school 9 in Chinese Taipei was excluded in the plots below due to unusually low reliability. 

Lower reliabilities for the math self-efficacy scale observed in higher achieving groups may be 

due to ceiling effects resulting from low or no variance in students’ responses. These findings 

were somewhat inconsistent with those found in Phase 2. A positive, albeit weak (the slope was 

0.24), relationship was observed between country-mean math performance and reliabilities for 

the math self-efficacy scale in lower achieving countries whereas the relationship was effectively 

zero in higher achieving countries (Figure 4.13).  
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Figure 4.44. Relationship between empirical reliability indices for math self-efficacy and 

mean math performance 
 

Reliabilities for the math self-efficacy scale were also examined in relation to average 

math self-efficacy of super-schools within each country. Note that, similar to those calculated for 

math proficiency, the average math self-efficacy for each super-school was calculated by 

employing the senate weights that summed to 1000 within each super-school. Descriptive 
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statistics for the distributions of average math-self efficacy by country are presented in Table 

4.11. Akin to the distributions of super-schools’ mean math performance, super-schools’ mean 

math self-efficacy levels varied substantially in Chinese Taipei whereas a very narrow range was 

observed in Jordan.  

Table 4.11. Descriptive statistics for the weighted averages of MATHEFF for super-schools by 
country 

Country mean SD min median max range skewness IQR  
Kazakhstan 0.14 0.18 -0.15 0.13 0.41 0.56 0.16 0.18 
Jordan -0.03 0.14 -0.18 -0.06 0.29 0.47 1.10 0.04 
Greece -0.14 0.27 -0.72 -0.09 0.30 1.02 -0.56 0.15 
Netherlands -0.17 0.28 -0.61 -0.19 0.24 0.85 -0.12 0.42 
Portugal 0.27 0.37 -0.34 0.39 0.81 1.15 -0.18 0.39 
Chinese Taipei 0.16 0.53 -0.71 0.22 1.01 1.72 -0.10 0.50 

 

Super-schools with higher mean math self-efficacy levels demonstrated lower reliabilities 

for the math self-efficacy scale. Figure 4.45 below demonstrates that a negative and 

approximately linear relationship was observed in all countries. The slopes were larger than 0.80 

in absolute value except for Kazakhstan where a substantially weaker relationship was observed 

(the slope was -0.19). Note that super-school 9 in Chinese Taipei was again excluded in the plots 

due to unusually low reliability. These findings were somewhat similar to those found in Phase 2 

(Figure 4.14). Although the relationship was effectively zero in lower achieving countries, a 

negative and approximately linear relationship was found between country-mean math self-

efficacy index and reliabilities for the math self-efficacy scale in Phase 2.  
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Figure 4.45. Relationship between empirical reliability indices for math self-efficacy and 

mean math self-efficacy 
 

4.6 Phase 6: Refinement with a Composite Background Variable 

The last phase of the analytical procedures examined whether using a composite 

background measure substantially reduced the impact of measurement error on correlation 



148 
 

estimates. To this end, a background measure that comprised math self-efficacy, math anxiety, 

and math self-concept measures was created by employing principal component analysis within 

each country. Although the literature suggests that these three domain-specific background 

measures are closely related constructs, the data were examined to ensure that they supported 

data reduction procedures.  Thus, a total of sixty-one correlation matrices resulting from 

responses to 18 items from the three background measures was explored by using three main 

criteria4: (i) the determinant, (ii) Bartlett’s test of sphericity, and (iii) the Kaiser-Meyer-Olkin 

measure of sampling adequacy (MSA).  

The determinants of all sixty-one correlation matrices were found to be greater than 

.00001 indicating no linear dependencies among items. Bartlett’s test of sphericity (Bartlett, 

1951) compares the correlation matrix to an identity matrix with the same dimensions to test 

whether the data exhibits substantial correlations among observed variables. The results were 

found to be significant in all countries, indicating that all the correlation matrices were 

significantly different from the identity matrix. MSA is another measure to assess the correlation 

matrix in terms of the adequacy of the inter-correlations of the items for data reduction 

procedures. MSA values that are closer to 1 indicate a predominance of substantial correlation 

entries in the correlation matrix. Observed MSA values ranged from 0.83 (Romania) to 0.95 

(Denmark), exceeding the 0.80 threshold that is commonly used in the literature (Hair et al., 

2009; Rencher, 2002).  

After ensuring the appropriateness of the correlation matrices, PCA was employed using 

the FactoMineR package (Le et al., 2008) in R. Eigenvalues of the first principal component 

                                                 
4 The procedures were executed in R; the Bartlett’s test of sphericity and the Kaiser-Meyer-Olkin measure of 
sampling adequacy are provided in the psych package (Revelle, 2019) in R. 
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ranged from 3.93 (Romania) to 8.53 (Denmark) and proportion of the variance explained by the 

first component ranged from 22% (Romania) to 47% (Denmark) with a mean of 36%. 

 
Figure 4.46. Distribution of proportion of variance explained by the first principal 

component 
 

Ordinary regression models were fit to data from each country by employing the 

composite background variable (i.e., the first principal component) as the background measure. 

Resulting within-country correlation estimates between math proficiency and the background 

variable were compared to those when the math self-efficacy measure alone was employed as the 

background measure. Note that only one third of the sample was employed in both of these 

models as described in Chapter 3. Estimates from the models employing the composite measure 

were labelled as “OLS_composite” and those from the models employing the math self-efficacy 

measure alone were labelled as “OLS_matheff”.  
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Descriptive statistics of the conventional correlation estimates from the two separate sets 

of models are presented below. Although the minimum OLS_composite estimate (0.11) was 

smaller than the minimum OLS_matheff estimate (0.14), OLS_composite estimates were larger 

in general. The interquartile range for the OLS_composite estimates was narrower than the one 

for the OLS_matheff estimates (0.20 and 0.23, respectively).  

Table 4.12. Descriptive statistics for the within-country conventional correlation estimates from 
OLS models with the composite measure and with math self-efficacy measure alone 

Conventional Estimates mean SD min median max range skewness IQR 

OLS_matheff 0.44 0.14 0.14 0.49 0.65 0.51 -0.61 0.23 

OLS_composite 0.47 0.13 0.11 0.51 0.69 0.58 -0.72 0.20 
 

 
Figure 4.47. Distribution of the within-country conventional correlations employing the 

composite measure and the math self-efficacy measure alone (only one third of the sample was 
available for the models due to the rotated context questionnaire) 
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As is evident from the descriptive statistics and from the graph above, the distribution of 

the OLS_composite estimates shifted toward higher values relative to those employing math self-

efficacy alone. Moreover, the shapes of the distributions were slightly different. The distribution 

of the OLS_composite estimates was less heterogeneous. Even though the distribution of the 

OLS_composite estimates still displayed bimodality, the two peaks were not as distinct as those 

evident in the distribution of the OLS_matheff estimates.  

The relationships between correlation estimates and country-mean math performances 

were also examined to investigate if a similar pattern was seen when a composite background 

measure was employed in the models. The relationship between OLS_composite correlation 

estimates and country-mean math proficiencies was approximately linear up to 475 for country-

mean math performance. In higher achieving countries (country-mean math performances above 

475), the relationship was weakened and negative (the slope was -0.15). Figure 4.48 below 

displays a side-by-side comparison of OLS_matheff and OLS_composite correlation estimates 

and their relationship to country-mean math performances. The two scatterplots display similar 

patterns in lower achieving countries; the correlation between the background measure and math 

proficiency was stronger as the country-mean math proficiency was higher. In addition, the 

association was slightly weakened when the composite measure was used as the background 

measure instead of math self-efficacy measure alone. 
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Figure 4.48. Comparison of the relationships between OLS correlation estimates and 
country-mean math performance (only one third of the sample was available for the models due 

to the rotated context questionnaire) 
 

In higher achieving countries, on the other hand, the sign of the association between OLS 

estimates and country-mean math performance was reversed when the composite measure was 

used. Even though the association was weak, OLS_composite estimates were smaller for 

countries with higher mean math performances. Note that the fit of the linear regression line was 

worse when OLS_composite estimates were plotted against country-mean math performance and 

this was more apparent in higher achieving countries.  

For the next step, multilevel modeling was employed to take clustering of the data into 

account. A set of two-level linear models in which the composite measure was used as a 

covariate at the student-level was fit to the data from each of the sixty-one participating 

countries. The distribution of standardized regression coefficients (i.e. the correlation estimates 

of the within-country relationships between the composite measure and math proficiency) were 

examined in comparison to those when math self-efficacy measure alone was employed as the 
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background measure. Estimates from the models employing the composite measure were 

labelled as “MLM_composite” and those from the models employing the math self-efficacy 

measure alone were labelled as “MLM_matheff”.  

In order to better understand the impact of the reduction in the sample size and examine if 

patterns observed were similar to those obtained in Phase 3, MLM_matheff estimates were first 

compared to OLS_matheff estimates. Consistent with the results from Phase 3, the correlation 

estimates from the MLM models were typically smaller than those obtained from the OLS 

models. In addition, MLM_matheff estimates were more heterogeneously distributed than 

OLS_matheff estimates. The interquartile range for the MLM_matheff estimates was wider than 

the one for the OLS_matheff estimates (0.26 and 0.23, respectively). Nonetheless, the bimodality 

that was seen before almost disappeared, similar to the findings from Phase 3. Both sets of 

estimates demonstrated larger heterogeneity in comparison to those obtained in Phase 1 and 

Phase 3 due to the reduction in the sample size and proportionally larger uncertainty. 
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Figure 4.49. Distribution of the within-country OLS and MLM estimates employing the 

math self-efficacy measure alone (only one third of the sample was available for the models due 
to the rotated context questionnaire) 

 

In relation to country-mean math performances, the correlation estimates obtained in this 

phase exhibited patterns that were very similar to those obtained in Phase 1 and Phase 3. 

Displayed in Figure 4.50, the association was again weakened after employing MLM models and 

the slopes were trivially smaller in magnitude in comparison to those obtained in Phase 1 and 

Phase 3 (Figure 4.4 and Figure 4.6). The increase in the heterogeneity in the distributions of the 

estimates was more apparent for higher achieving countries. 
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Figure 4.50. Comparison of the relationships between OLS_matheff and MLM_matheff 

estimates and country-mean math performance (only one third of the sample was available for 
the models due to the rotated context questionnaire) 

 

Next, MLM_matheff correlation estimates were compared with MLM_composite 

estimates to examine the changes after employing a composite measure instead of math self-

efficacy alone as a background measure. Descriptive statistics of the MLM estimates from the 

two separate sets of models are presented in Table 4.13. MLM_composite estimates were 

generally larger, ranging from 0.11 to 0.66. Moreover, the interquartile range for the 

MLM_composite estimates was narrower than the one for the MLM_matheff estimates (0.21 and 

0.26, respectively). Note that the interquartile range for the MLM_composite estimates was also 

narrower than the one for the MLM estimates obtained in Phase 3 (0.21 and 0.22, respectively) 

despite the larger uncertainty caused by the reduction in the sample size. 
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Table 4.13. Descriptive statistics for the within-country correlation estimates from MLM models 
with the composite measure and with math self-efficacy measure alone 

MLM Estimates mean SD min median max range skewness IQR 

MLM_matheff 0.35 0.14 0.08 0.37 0.60 0.51 -0.12 0.26 

MLM_composite 0.40 0.13 0.11 0.41 0.66 0.54 -0.12 0.21 

         

 
Figure 4.51. Distribution of the within-country MLM estimates employing the composite 

measure and the math self-efficacy measure alone (only one third of the sample was available 
for the models due to the rotated context questionnaire) 

 

The histogram above illustrates that the distribution of the MLM_composite estimates 

was slightly shifted toward higher values in comparison to the distribution of MLM_matheff 

estimates.  In addition, the distribution of the MLM_composite estimates was less dispersed than 

the distribution of the MLM_matheff estimates. 
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The two scatterplots below demonstrate the relationship between correlation estimates 

and country-mean math performance. In lower achieving countries, the relationship between 

MLM correlation estimates and country-mean math performance was still positive and 

approximately linear but weakened when the composite measure was employed (the slopes were 

0.69 and 0.55, respectively). In higher achieving countries, on the other hand, the relationship 

was negative and larger in absolute value when the composite measure was employed (the slopes 

were -0.05 and -0.24, respectively). 

 

Figure 4.52. Comparison of the relationships between MLM correlation estimates and 
country-mean math performance (only one third of the sample was available for the models due 

to the rotated context questionnaire) 
 

The distributions of the MLM_composite estimates and the OLS_composite estimates 

were also compared to examine the impact of clustering on the correlation estimates. Similar to 

the patterns seen previously, correlation estimates were generally smaller when clustering was 

taken into account by employing multilevel modeling. Moreover, the shapes of the distributions 



158 
 

were slightly different for OLS_composite and MLM_composite estimates. Similar to the 

previous findings, the bimodality that was seen before was not as apparent.  

 
Figure 4.53. Distribution of the within-country OLS and MLM estimates employing the 

composite measure (only one third of the sample was available for the models due to the rotated 
context questionnaire) 

 

Figure 4.54 below displays a side-by-side comparison of OLS_composite and 

MLM_composite correlation estimates plotted against country-mean math performances. In 

higher achieving countries, the association was negative and stronger when multilevel modeling 

was employed (the slopes were -0.15 and -0.24, respectively). The relationship in lower 

achieving countries was still positive but weakened after multilevel modeling was employed. It is 

important to note that the fit of the linear regression lines were worse than those that were 

obtained from OLS models and, again, the heterogeneity was more apparent in higher achieving 

countries. 
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Figure 4.54. Comparison of the relationships between correlation estimates and country-
mean math performance (only one third of the sample was available for the models due to the 

rotated context questionnaire) 
 

The changes in the correlation estimates after employing multilevel modeling were 

examined in relation to within-country ICCs. As Figure 4.55 demonstrates, the changes were 

larger for countries with large ICCs. Furthermore, the relationship was approximately linear with 

a negative slope (-0.66). 
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Figure 4.55. Relationship between changes in the correlation estimates from OLS to 
MLM and within-country intra-class correlations for math proficiency outcome (only one third 

of the sample was available for the models due to the rotated context questionnaire) 
 

For example, the correlation between students’ math performance and math self-efficacy 

almost stayed the same for Finland, as it had the smallest ICC across all countries in the dataset. 

By contrast, Hungary, with the largest ICC, had the largest change in the correlation estimate 

from conventional analyses to MLM (a decrease of 0.22). These results are very similar to those 

found in Phase 3.  
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Chapter 5: Discussion 

5.1 Summary of Findings 

The goal of this study was to investigate the impact of measurement error and clustering 

on correlations reported between background data and proficiency scales in ILSAs. As discussed 

in depth in Chapter 2, statistical artefacts such as heterogeneous measurement error and nested 

data are shown to impair the accuracy of correlation estimates. In this regard, a step-wise model 

refinement approach was employed to explore the operating characteristics of various modeling 

techniques through application to data from PISA 2012. The dataset contained 468,200 students 

from 61 participating countries. The estimates of correlations between math self-efficacy and 

math achievement across countries were the focus of this study. 

Within-Country Relationships 

Conventional Estimates (Phase 1) 

Despite advances in methodology, ordinary regression models are commonly used when 

analyzing ILSA data. Therefore, as the baseline for comparisons across models in the model-

refinement process, OLS models were fit to the data from each country and standardized 

regression coefficients between math proficiency and math self-efficacy were examined. 

Substantial variation was observed across countries. Although all were positive, the distribution 

of conventional within-country correlations was bimodal; rather weak relationships were 

observed in certain countries such as Colombia (r OLS = 0.15) and Indonesia (r OLS = 0.17) 

whereas rather strong relationships were observed in others such as Chinese Taipei (r OLS = 0.66) 

and Portugal (r OLS = 0.63).  
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At the between-country level, the relationship between country-mean math proficiency 

and country-mean math self-efficacy was positive (r=0.55) and no attitude-achievement paradox 

was observed, consistent with the findings from previous studies on math self-efficacy (Lee, 

2009). However, there were outliers such as Japan and Korea, two countries exhibiting low 

levels of math self-efficacy at the country-level despite their high mean math performances. 

When examined at the within-country level, these two countries displayed strong, positive 

relationships between math proficiency and math self-efficacy (the correlation estimates were 

0.58 and 0.62, respectively).  

Although variation across countries is expected to some extent, it is concerning to 

observe such big differences in within-country relationships given that a strong and positive 

relationship between math self-efficacy and math performance is well established in the 

literature. It has been discussed in the literature that such a heterogeneity across countries may 

result from imperfect measurement, particularly in lower achieving and developing countries 

(Rutkowski & Rutkowski, 2010). In line with this argument, conventional correlation estimates 

varied substantially, especially in lower achieving countries, and a strong, positive relationship 

was observed between correlation estimates and lower achieving countries’ mean math 

achievement (r (low) = 0.82). In higher achieving countries (i.e., country-mean math performance 

greater than 475), correlation estimates were more homogeneous and their relation to mean math 

performance was substantially weaker (r (high) = 0.28).  

Accounting for Measurement Error Only (Phase 2) 

Students’ math performance and math self-efficacy levels are not directly observed 

quantities but, instead, they are latent constructs measured by means of students’ responses to 

various questions. Therefore, if the uncertainty in these variables were ignored in the models, the 
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resulting within-country correlation estimates would be biased. In addition, substantial 

differences in the amount of measurement error in the data across countries can lead to greater 

heterogeneity in the correlation estimates. To this end, multidimensional IRT modeling was 

employed to determine if the resulting correlation estimates displayed greater homogeneity 

across countries than the conventional correlation estimates obtained from the OLS models in 

Phase 1.  

Displayed in Figure 4.5, the distribution of MIRT correlation estimates was also bimodal 

and rather heterogeneous. The interquartile range was only slightly narrower than the one for the 

distribution of conventional estimates (0.20 and 0.22, respectively). However, MIRT estimates 

were typically larger than the conventional estimates. Furthermore, similar to the conventional 

correlation estimates, MIRT estimates were positively correlated with county-mean math 

performance. In comparison to patterns observed in Phase 1, the relationship was still strong and 

positive for lower achieving countries, but slightly weakened after employing MIRT modeling 

(the slopes were 0.82 and 0.78, respectively). In higher achieving countries, the relationship was 

weakened considerably and the slope was effectively zero (0.05).   

The distribution of empirical reliabilities for the math proficiency scale were noticeably 

more heterogeneous and skewed towards smaller values in lower achieving countries in 

comparison to higher achieving countries. For lower achieving countries with average math 

proficiency scores smaller than 475, the slope of the relationship between country-mean math 

performance and empirical math reliability was 0.92. In higher achieving countries, this 

relationship was weaker but still strong and positive (the slope was 0.58). These findings indicate 

a disjuncture between the test information function and the distributions of skills in many 

countries, suggesting that the math proficiency scale was particularly less precise for lower levels 
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of math proficiency. Furthermore, MIRT correlation estimates between math proficiency and 

math self-efficacy were smaller for countries exhibiting lower reliabilities for the math 

proficiency scale (Figure 4.15) and this was more evident in lower achieving countries in 

comparison to higher achieving countries. 

Overall, empirical reliabilities for the math self-efficacy scale did not display substantial 

variation across countries. However, in lower achieving countries they were more 

homogeneously distributed in comparison to those in higher achieving countries (Figure 4.12). In 

addition, there was a weak or null relationship between country-mean math performance and 

math self-efficacy scale reliability both in lower and in higher achieving countries (the slopes 

were 0.24 and -0.02, respectively). When examined in relation to countries’ average math self-

efficacy, a strong, negative relationship was observed (r (high) = -0.55). Countries with lower 

levels of math self-efficacy such as Japan and Korea possessed higher empirical reliabilities for 

the math self-efficacy scale. By contrast, there was no evident association between country-mean 

math self-efficacy and reliabilities for the math self-efficacy scale in lower achieving countries. 

Nevertheless, similar to the findings for the math proficiency scale, MIRT correlation estimates 

between math proficiency and math self-efficacy were weaker for countries that possessed lower 

empirical reliabilities for the math self-efficacy scale and this relationship was more evident in 

lower achieving countries. These findings suggest that correlations were attenuated when the 

amount of noise in the data was larger. 

Accounting for Clustering Only (Phase 3) 

PISA employs a two-stage stratified sampling design, which involves first sampling 

schools that have eligible 15-year-old students and then selecting a random sample of students 

from these randomly sampled schools (OECD, 2014). The use of multi-stage sampling technique 
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results in a nested data structure and this has certain implications in statistical analysis as 

described in Chapter 2. Therefore, two-level linear modeling was employed to account for 

clustering of the data and determine if the estimates of within-country relationships between 

math self-efficacy and math achievement have greater homogeneity across countries than that 

displayed by the conventional correlation estimates obtained in Phase 1. The intra-class 

correlations (ICCs) obtained from the unconditional models were larger than 15% in most of the 

countries, indicating that multilevel modeling was an appropriate model choice.   

Within-country correlation estimates obtained from the MLM models were typically 

smaller than both the conventional estimates and the MIRT estimates. Because the MLM induces 

a range restriction on both the predictor and the outcome if between-group variance is 

substantially larger than within-group variance (i.e., large ICC), these findings were expected. 

The correlation estimates still showed substantial variability across countries but they were more 

homogeneously distributed. The bimodality and skewness towards larger values that were 

observed in the distribution of the estimates from the OLS and MIRT models almost 

disappeared.  

Similar to OLS and MIRT correlation estimates, MLM estimates were strongly correlated 

with countries’ average math performances (r (low) = 0.71) for lower achieving countries, but this 

relationship was slightly weaker in comparison to OLS and MIRT estimates. In higher achieving 

countries, no evident association was observed between correlation estimates and country-mean 

math performance and the slope of the relationship was effectively zero, similar to the findings 

from Phase 2. Furthermore, the decreases in the correlation estimates from the OLS models to 

the MLM models were larger for countries that possessed larger ICCs (the slope was -0.79). This 
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finding suggests that the impact on the correlation estimates are moderated by the degree of 

clustering in the data. 

Accounting for Both Measurement Error and Clustering (Phase 4) 

In the final step of the model refinement process, multilevel multidimensional mixture 

IRT modeling was employed to account for both measurement error and clustering in the data. 

The goal was to determine if the estimates of within-country relationships between math self-

efficacy and math achievement had greater homogeneity across countries than that displayed by 

the conventional correlation estimates or the ones obtained from the models that account for 

either measurement error or clustering only. The Q-matrix that was developed in Phase 2 to fit 

the two-dimensional IRT models was also used to fit MLMixMIRT models. The models were 

constrained to have two latent classes based on previous research (von Davier, 2005a; von 

Davier, Yamamoto, et al., 2019). A smaller number of latent classes was preferred so that 

resulting latent classes could be interpreted similarly across countries. The models yielded two 

latent classes that consistently differed from each other by substantial differences in mean math 

ability estimates. Note that this is not a mathematical necessity of any MLMixMIRT model. The 

model was specified so that it should find two latent classes based on similarities and differences 

in response patterns. The results showed that the underlying latent class structure based on the 

patterns seen in students’ responses were driven by overall math performance. Accordingly, the 

resulting latent classes were labelled “High Math Class” and “Low Math Class”. The estimates 

of within-country relationships between math self-efficacy and math achievement were then 

compared between two latent classes as well as across models.  

Correlation estimates for the High Math Class were more homogeneously distributed 

whereas those for the Low Math Class varied substantially. In fact, the estimates for the Low 
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Math Class exhibited the largest heterogeneity across all models employed in this study (Table 

4.6). Moreover, the High Math Class demonstrated typically larger correlations between math 

proficiency and math self-efficacy in comparison to the Low Math Class. When compared to the 

correlation estimates obtained from the OLS, MIRT, and MLM models in previous phases, the 

estimates for the High Math Class were still substantially larger and more homogenous.  

MLMixMIRT correlation estimates were examined in relation to both country-mean math 

proficiency and average math proficiency estimates by latent class. The results showed that there 

was a positive relationship between countries’ average math proficiency and the correlation 

estimates between math proficiency and math self-efficacy in both High Math Class and Low 

Math Class (Figure 4.23). Furthermore, this positive relationship was noticeably stronger for 

Low Math Class (the slopes were 0.85 and 0.32, respectively). When examined in more detail, 

the slope for the High Math Class was effectively zero (0.02) in higher achieving countries but 

still positive (0.36) in lower achieving countries. These findings were consistent with those 

observed in previous phases. Even after employing MLMixMIRT modeling that accounts for 

both clustering and measurement error in the data, in lower achieving countries the correlations 

between math proficiency and math self-efficacy were still moderated by population-level 

performance. This implies that there were likely other factors, such as students’ lower levels of 

meta-cognition (i.e., the Dunning-Kruger effect), that contributed to weaker correlations in lower 

performing countries. 

EAP reliabilities derived from the MLMixMIRT model estimation revealed that the math 

proficiency scale was less precise at lower levels of math proficiency, in line with the results 

from the MIRT models in Phase 2. For the Low Math Class, estimated reliabilities for the math 

proficiency scale were typically smaller in comparison to those for the High Math Class. In 
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general, empirical reliabilities for the math proficiency scale were larger when the mean math 

proficiency was greater. This pattern was also more apparent for the Low Math Class (Figure 

4.27 and Figure 4.28). These findings were consistent with those from the MIRT models 

employed in Phase 2. 

Similar to the findings for the math proficiency scale, empirical reliabilities for the math 

self-efficacy scale were more heterogeneously distributed for the Low Math Class. However, 

reliabilities for the High Math Class were skewed towards smaller values in comparison to those 

for the Low Math Class. Furthermore, reliabilities for the math self-efficacy scale were 

negatively correlated with country-mean math self-efficacy levels; that is, countries with higher 

math self-efficacy levels typically displayed lower reliabilities for both latent classes (Figure 

4.31). These findings were also consistent with those from the MIRT models employed in Phase 

2. 

For both the Low Math Class and the High Math Class, correlation estimates between 

math proficiency and math self-efficacy were larger for countries exhibiting greater reliabilities 

for the math proficiency scale. These findings were in line with the findings from the MIRT 

models employed in Phase 2, suggesting that correlations were attenuated when the amount of 

noise in the data was larger. Moreover, for the High Math Class, MLMixMIRT correlation 

estimates were again typically larger when the empirical reliabilities for the math self-efficacy 

scale were greater. For the Low Math Class, however, countries that possessed larger reliabilities 

for the math self-efficacy scale exhibited weaker correlations between math self-efficacy and 

math achievement.  
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Patterns of Relationships across Subgroups Within-Country (Phase 5) 

One of the main hypotheses of this study was that levels of math proficiency might 

moderate the relationship between math proficiency and math self-efficacy. Employing advanced 

modeling techniques that account for both measurement error and clustering in the data was 

expected to mitigate this moderation. The findings from the previous phases revealed that math 

proficiency still played a role, though somewhat diminished, in the magnitude of correlation 

estimates, even after taking measurement error and clustering into account in the models. In this 

phase of the study, a supplementary analysis was conducted to explore if school-level correlations 

displayed similar patterns in relation to math proficiency. Unfortunately, preliminary analyses 

indicated that within-country school-level sample sizes were not sufficient to estimate complex 

models. Hence, as an alternative strategy, schools within each country were grouped into nine 

“super-schools” that were ordered based on their average math proficiency levels and Phase 1 and 

Phase 2 were repeated at the super-school level.  

In order to limit the volume of the analyses, a set of countries exhibiting a wide range of 

country-level correlations were selected. Countries were ordered based on country-level 

conventional correlations and six countries were selected from the bottom, middle, and top 

quartiles: Kazakhstan (r OLS = 0.28), Jordan (r OLS = 0.29), Greece (r OLS = 0.48), Netherlands (r 

OLS = 0.48), Portugal (r OLS = 0.64), and Chinese Taipei (r OLS = 0.66). In each country, schools 

falling into the bottom 15% of the distribution were grouped into super-school 1, those in the top 

15% were grouped into super-school 9, and the remaining schools were grouped into seven super-

schools, each containing approximately 10% of the sample. 

Conventional correlations between math proficiency and math self-efficacy at the super-

school level within a country were larger for countries with larger country-level correlations. 
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Interestingly, for the top four countries with larger country-level correlation estimates, the 

maximum correlation estimate for the super-schools was close to the country-level correlation 

estimate. Furthermore, except for Chinese Taipei, a positive and approximately linear 

relationship at the super-school level was observed between math proficiency and the correlation 

estimates, consistent with the findings from previous phases. In Chinese Taipei, the highest 

achieving country among the selected countries, correlations were weaker when the math 

proficiency level of the super-school was higher (the slope was -0.69). In particular, a substantial 

drop in correlation estimates was observed for super-schools 8 and 9 in Chinese Taipei.  

In agreement with the country-level findings from Phase 2, MIRT correlation estimates 

between math proficiency and math self-efficacy were larger than conventional estimates at the 

super-school level. Except for Chinese Taipei, higher achieving super-schools still exhibited 

larger correlations but the slopes were weakened in all five countries in comparison to those 

obtained from the OLS models. Chinese Taipei, again, demonstrated a negative relationship 

between math proficiency and correlation estimates (the slope was -0.71) even after 

measurement error was taken into account. This paradoxical relationship indicates that higher 

performing students’ self-assessments of their math proficiency were lower in Chinese Taipei. 

Although this finding is at odds with the patterns evident in other countries, it is in line with 

findings from previous studies on response style bias in certain cultures (Han et al., 2015; He & 

van de Vijver, 2015) and modesty bias among higher performers (Ehrlinger et al., 2008; Min et 

al., 2016). 

Overall, empirical reliabilities obtained from the MIRT models for the math proficiency 

scale demonstrated substantial variation within and across countries. Super-schools in Kazakhstan 

and Jordan, the two lowest achieving countries, particularly possessed lower reliabilities for the 
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math proficiency scale. In addition, super-school 1 (i.e., schools falling into the bottom 15% of the 

distribution based on mean math achievement) in both Greece and Portugal demonstrated 

unusually low reliabilities for the math proficiency scale. These findings are in agreement with 

those observed in previous phases, indicating that the math proficiency scale was less precise at 

lower levels of proficiency. The highest performing super-school in Chinese Taipei also possessed 

unusually low reliability for the math proficiency scale. Greater uncertainty is expected in the tails 

of the proficiency scale, especially when a fixed set of items is used to measure a wide range of 

ability levels. However, the discrepancy between actual ability levels and the levels that the math 

proficiency scale used in PISA 2012 targets is arguably more problematic for lower levels of math 

ability. It was also evident, especially in lower achieving countries, that correlation estimates were 

larger when reliabilities for the math proficiency scale were larger. 

Consistent with the findings from Phase 2 and Phase 4, empirical reliabilities for the math 

self-efficacy scale demonstrated larger variation in higher achieving countries such as Portugal 

and Chinese Taipei. This relationship was also evident when reliabilities for the math self-efficacy 

scale were examined in relation to mean math performance levels by super-schools. A negative 

and approximately linear relationship was observed in all countries and the slopes were larger in 

magnitude in higher achieving countries. In addition, estimated reliabilities for the math self-

efficacy scale were lower when mean math self-efficacy was higher. These findings were in 

agreement with those from Phase 2 and Phase 4, suggesting ceiling effects resulting from low or 

no variance in students’ responses in groups with higher levels of math self-efficacy. Lower 

reliabilities for the math self-efficacy scale were also associated with larger correlation estimates 

between math proficiency and math self-efficacy. Note that lower reliabilities were typically 
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observed in higher achieving super-schools, which typically exhibited larger correlations between 

math proficiency and math self-efficacy. 

Employing a Composite Background Variable (Phase 6) 

Given that there have been numerous concerns raised in the literature regarding the 

background measures (Buckley, 2009; He & van de Vijver, 2015; Hopfenbeck & Maul, 2011; 

Kyllonen & Bertling, 2014; Rutkowski & Rutkowski, 2010), this study investigated if the impact 

of measurement error on correlation estimates could be mitigated by employing an attitudinal 

background measure comprising multiple indicators. To this end, a composite measure that 

comprised math-self-efficacy, math anxiety, and math self-concept was created by conducting 

principal component analyses within each country separately. The newly created composite 

measure was, then, employed in the models to compare the changes in the correlation estimates 

to those observed when math self-efficacy was used as a single background measure. Although 

employing a composite measure led to a change in the construct and has a different substantive 

interpretation, this procedure was proposed primarily as a methodological investigation. It should 

also be kept in mind that only one third of the sample could be employed in this phase due to the 

use of rotated design for the context questionnaire in PISA 2012 (OECD, 2013a). Hence, the 

uncertainty in the estimates was potentially larger due to the reduction in the sample size and this 

should be taken into consideration when interpreting the results from this phase.  

First, within each country, two separate OLS models were fit to the data; one employing 

math self-efficacy alone (OLS_matheff) and the other employing the composite measure 

(OLS_composite) as the background variable. OLS_composite correlation estimates were larger 

in general and exhibited less heterogeneity. In addition, the distribution of OLS_matheff 
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estimates displayed bimodality, similar to the one obtained from the OLS models in Phase 1. 

However, the two peaks in the distribution of the estimates were not as distinct when the 

composite measure was employed (Figure 4.47).  

Consistent with the findings from previous phases, in lower achieving countries, a 

positive and approximately linear relationship was observed between country-mean math 

performance and the correlation estimates but the relationship was weaker when the composite 

measure was employed in the models (the slopes were 0.80 and 0.72, respectively). In higher 

achieving countries, OLS_matheff estimates exhibited a weak but positive relationship (the slope 

was 0.27), a pattern similar to the one obtained from the OLS models in Phase 1. However, when 

the composite measure was employed in the models, a weak but negative relationship was 

observed (the slope was -0.15).  

The impact of employing a composite measure on the estimates was investigated further 

by employing multilevel modeling to take clustering in the data into account. As with the OLS 

models, within each country, two separate MLM models were fit to the data; one employing 

math self-efficacy alone (MLM_matheff) and the other employing the composite measure 

(MLM_composite) as the background variable. MLM_composite correlation estimates were 

generally larger. This is somewhat consistent with the findings from previous phases. Taking 

clustering of the data into account typically led to smaller estimates whereas correcting for 

measurement error yielded larger estimates. Because the composite measure theoretically 

contains a smaller amount of measurement error in comparison to the math self-efficacy scale, 

observing larger estimates when the composite measure was employed was expected. Moreover, 

the interquartile range for the MLM_composite estimates was not only narrower than the one for 

the MLM_matheff estimates but also narrower than the one for the MLM estimates obtained in 
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Phase 3. This suggests that despite the larger uncertainty caused by the reduction in the sample 

size in this phase, the correlation estimates were more homogeneously distributed when the 

composite measure was employed in the models. 

In lower achieving countries, the relationship between MLM correlation estimates and 

country-mean math performance was still positive but weaker when the composite measure was 

employed (the slopes were 0.69 and 0.55, respectively). In higher achieving countries, on the 

other hand, the relationship was negative and larger in absolute value (the slopes were -0.05 and 

-0.24, respectively). Note that OLS_composite estimates and MLM_composite estimates both 

demonstrated negative, albeit weak, relationships between country-mean math performances in 

higher achieving countries but the relationship was stronger when MLM was employed. These 

findings for higher achieving countries were somewhat inconsistent with those from previous 

phases in the study. OLS estimates obtained in Phase 1 were positively correlated with country-

mean math achievement in higher achieving countries but the relationship was weaker (the slope 

was 0.28). When measurement error was taken into account in Phase 2, the slope of the 

relationship was effectively zero (0.05). When MLM models were fit to the data to take the 

clustering into account, the slope of the relationship was again effectively zero (-0.04).  Finally, 

when both measurement error and clustering were taken into account with MLMixMIRT models, 

the slope of the relationship was once again effectively zero (0.02) for the High Math Class in 

higher achieving countries. Therefore, observing a negative relationship between the correlation 

estimates and mean math performances after employing the composite measure may be due to 

the change in the construct and greater sampling error resulting from employing one third of the 

sample.  
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Conclusions 

The findings from this study offer both methodological and substantive takeaways. The 

step-wise refinement of the models conducted in the first four phases showed that conventional 

correlations might provide an incomplete picture and the resulting inferences could be puzzling 

or even misleading. The distribution of conventional correlation estimates obtained from the 

OLS models in Phase 1 demonstrated a large spread suggesting that the relationships between 

math proficiency and math self-efficacy were as weak as 0.15 in certain countries whereas as 

strong as 0.66 in others, as expected. When examined in relation to country-level math 

performances, weaker correlations were mostly observed in lower achieving countries. This 

finding is consistent with previous studies that lower performers tend to misjudge their own 

knowledge and skills due to lack of metacognitive competence (Kruger & Dunning, 1999), 

resulting in weaker correlations between their math self-efficacy and their math performances. 

Moreover, a moderate correlation (0.51) was found between conventional correlation estimates 

and within-country variances of the math self-efficacy variable, suggesting that restricted range 

of the predictor might be a factor behind the heterogeneity observed in conventional correlation 

estimates. If these were considered alone, one might conclude that certain cultural factors lead to 

such big differences across countries or could not be sure if these were due to certain statistical 

artefacts. Indeed, many argued that the Dunning-Kruger effect might result from artefacts such 

as measurement error or restriction of range (Ehrlinger et al., 2008; Krueger & Mueller, 2002).  

The MIRT and the MLM models served as vehicles to understand the characteristics of 

the PISA data and how impactful the measurement error and clustering could be on the 

correlation estimates. The findings from the MIRT models demonstrated that the amount of 

measurement error varied across countries and larger amounts of noise in the data led to 
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attenuated correlation estimates. In addition, a positive relationship was found between the 

empirical reliabilities of the math proficiency scale and country-level math performances, 

indicating a mismatch between the skill distributions in many countries and the test information 

function. No evident relationship was observed between country-level mean math performances 

and the empirical reliabilities for the math self-efficacy scale. However, countries with higher 

levels of mean math self-efficacy exhibited lower reliabilities for the math self-efficacy scale. 

This may indicate that the math self-efficacy scale did not function as well for higher levels of 

math self-efficacy as for the lower levels of math self-efficacy, consistent with ceiling effects. 

The findings from the MLM models showed that the ICCs based on the cognitive outcome 

ranged from 15% to 65% across countries and taking clustering into account led to changes in 

the estimates as large as 0.3 in countries with large ICCs. These findings suggested that both 

measurement error and clustering were impactful on the estimates and should be accounted for to 

obtain unbiased estimates of correlations.  

The MLMixMIRT models employed in Phase 4 not only properly accounted for 

measurement error and clustering in the data, as the characteristics of the PISA data require, but 

also took the possibility of distinct underlying subpopulations within countries into account. The 

correlation estimates between math self-efficacy and math proficiency were moderated by mean 

math performance even after measurement error and clustering were accounted for. Even in 

higher achieving countries, a weaker association between math self-efficacy and math 

proficiency in lower achieving groups was consistently seen across countries. Higher performing 

groups in both lower and higher achieving countries exhibited larger empirical reliabilities for 

the math proficiency scale and more homogeneously distributed correlations between math 

proficiency and math achievement. Hypothesizing a mixture of subpopulations within each 



177 
 

country by employing the MLMixMIRT modeling helped understand underlying factors behind 

the substantial variation observed in conventional correlations across countries in Phase 1 and 

shed light on how this pattern emerges from greater randomness in the responses of lower 

performing groups.  

In alignment with the findings from Phase 4, the results from the analyses conducted in 

Phase 5 yielded similar patterns of relationships at the within-country level. Higher achieving 

groups of schools exhibited stronger correlations between math proficiency and math self-

efficacy in five out of six countries chosen for this phase of the analyses. These findings support 

the hypothesis that the relationship between math proficiency and math self-efficacy was 

moderated by math performance. In Chinese-Taipei, however, weaker correlations were 

observed in higher achieving groups of schools. This finding requires further investigation to 

examine if response style bias or modesty bias explains observing such a different pattern in 

Chinese-Taipei. Finally, the findings from Phase 6 provided more insights on the impact of 

measurement error on the correlation estimates and indicated that employing an attitudinal 

background measure comprising multiple indicators could mitigate the impact of measurement 

error on the estimates.  

5.2 Limitations and Future Research 

This study carried out a comprehensive, methodological investigation of the impact of 

measurement error and clustering on correlation estimates by conducting a systematic sequence 

of statistical modeling techniques. Nonetheless, it has certain limitations that should be noted and 

further investigated. First, this study employed data from 61 PISA 2012 countries as an 

instructive example to explore the impact of heterogeneous measurement error and clustering on 
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the statistical inferences. These statistical artefacts are not unique to the PISA data and they are 

particularly common in data from ILSAs. Conducting similar investigations by means of 

applications to data from other ILSAs such as TIMSS can support some of the findings. For 

instance, one of the main findings of this study was the moderating impact of population-level 

math performance on the correlations between math self-efficacy and math achievement from 

lower performing countries, even after taking measurement error and clustering into account. 

This should be further investigated to better understand the factors contributing to such 

differences between lower performing and higher performing countries.  

Moreover, findings from the MIRT and MLMixMIRT models revealed that the empirical 

reliabilities for the math proficiency scale varied across countries and data from lower 

performing countries possessed larger amounts of measurement error. This warrants further 

investigation of the precision of the scale in capturing the construct in lower performing 

countries. Careful examination of the test information functions can offer more insight into these 

findings. As mentioned before, when the same set of items is used to assess a wide range of 

ability levels, measurement of the construct is expected to be less than optimal, particularly in 

the tails of the skill distribution it targets. However, this can create various obstacles. For 

instance, Tijmstra and others (2020) demonstrated that the root-mean square deviation, which is 

commonly used to detect country-specific item misfit and DIF in ILSAs including PISA, could 

be less sensitive in lower performing countries due to the misalignment between the test 

information function and the skill distributions of those countries. Consequently, this is a threat 

to the ability to detect DIF and ensure the measurement invariance across countries that is 

essential to the ILSA claim of the comparability of measurement (Tijmstra et al., 2020).  
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In the Phase 4 analyses, the MLMixMIRT models were constrained to have two latent 

classes based on previous research (von Davier, 2005a; von Davier, Yamamoto, et al., 2019) and 

for keeping the model structure the same across countries ensuring the interpretability of the 

resulting latent classes. Testing models with larger numbers of latent classes was beyond the 

scope of this study but should be investigated in future research. In addition, the hierarchical 

mixture distribution used in the MLMixMIRT models does ensure that the latent classes are the 

same across schools within countries, but not across countries. Hence, although resulting latent 

classes were interpreted the same way across countries, more nuanced interpretations were 

possible for the latent class structure within each country and should be considered in future 

studies. It should be emphasized that the MLMixMIRT modeling was employed in this study not 

because it is a more complex and advanced approach but because it accounts for the structure 

and characteristics of the PISA data. Nevertheless, indirect support for the models can be further 

considered by examining proper goodness of fit statistics. Furthermore, exploratory analyses of 

within-country latent class sizes did not suggest any evident pattern but further investigation can 

offer more insight to better interpret the findings from the MLMixMIRT models.  

Furthermore, the original analysis plan for Phase 5 was to replicate the step-wise model 

refinement approach (that was carried out at the country-level) at the school-level in order to 

determine if school-level correlations exhibited similar patterns in relation to math proficiency. 

However, the data did not support employing complex modeling techniques with so many 

parameters to be estimated, given the small sample sizes within schools. In order to avoid the 

convergence issues encountered when running complex models, schools within each country 

were grouped based on their average math performances to conduct further analyses. Although 

super-school level analyses provided some valuable insights, the grouping into super-schools did 
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not support employing MLMixMIRT modeling to account for clustering.  These issues highlight 

some of the obstacles with employing advanced modeling techniques.  

One of the findings from Phase 5 was the negative relationship that was observed in 

Chinese Taipei between correlation estimates and mean math performance. This result was 

inconsistent with what was observed in other countries, as well as those obtained from the 

county-level analyses. This may be signaling the modesty bias that is common among top 

performers (Ehrlinger et al., 2008; Min et al., 2016). However, considering the limitations faced 

in conducting the Phase 5 analyses, this finding should be further investigated.  

Finally, employing a composite measure in Phase 6 led to a two-thirds reduction in 

sample size due to the use of rotated design for the context questionnaire in PISA 2012 (OECD, 

2013a). Previous studies emphasized methodological concerns about possible biases resulting 

from the use of a rotated design for the context questionnaire (von Davier, 2014). Regardless, the 

comparisons made between the findings from Phase 6 and previous phases should be made with 

due consideration of this limitation.  

5.3 Final Remarks 

Results from PISA, as well as those from other international large-scale assessments, 

have helped to inform educational research, policy, and practices for over three decades. Over 

the years, many refinements and improvements have been made to enhance the accuracy and 

validity of the results, while striving to meet the needs of the current educational reforms and 

practices (Kirsch & Braun, 2020).  For example, advanced statistical modeling techniques have 

been developed in conjunction with exponential increases in computing power. These 

advancements have enabled researchers and practitioners to improve the psychometric quality of 
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assessments and to strengthen the statistical inferences based on the data generated by these 

assessments.  

Nonetheless, less advanced techniques that do not properly account for certain 

characteristics of ILSA data are still commonly used. Although they are relatively convenient 

and better known, various studies demonstrated that employing conventional modeling 

techniques can impair the statistical estimates and lead to misleading or puzzling findings. In 

particular, measurement error and clustering are commonly overlooked when analyzing data 

from ILSAs. For instance, Schmidt and Burroughs (2015) illustrated, by employing data from 

PISA 2012, that spending more time on applied math was negatively correlated with math 

performance at the between-country level, even though the correlations were positive at the 

within-country level. In calculating within-country correlations, they employed multilevel linear 

modeling, which accounts for clustering – as is appropriate for PISA data. On the other hand, 

multilevel linear modeling does not take measurement error into account, leading to misleading 

results. Indeed, their findings from within-country analyses suggested a complicated picture, 

indicating that exposure to applied math was associated with higher math performance only up to 

a certain point and this relationship was reversed for rather higher levels of exposure to applied 

math. As others pointed out (Hansen & Strietholt, 2018; Wihardini, 2016), PISA’s opportunity to 

learn measure exhibits problems with its validity and can lead to biased estimates when 

measurement error associated is not accounted for.  

In light of similar examples from the literature, the focus of this study was the unresolved 

issues regarding the heterogeneity in relationships between certain background variables and 

cognitive measures seen across countries participating in ILSAs. To this end, a comprehensive 

investigation was carried out to examine the operating characteristics of competing modeling 
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techniques. As an extended, illustrative example, this study explored the impact of the clustered 

nature of the data and the heterogeneous measurement error on the correlations between math 

self-efficacy and math proficiency by employing data from PISA 2012. The findings showed that 

advanced modeling techniques not only were more appropriate given the characteristics of the 

data, but also provided greater insight about the patterns of relationships across countries.  
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Appendix 

Table A.1. Country names and abbreviations

Country abbr.  Country name 
ARE United Arab Emirates 
ARG Argentina 
AUS Australia 
AUT Austria 
BEL Belgium 
BGR Bulgaria 
BRA Brazil 
CAN Canada 
CHE Switzerland 
CHL Chile 
COL Colombia 
CRI Costa Rica 
CZE Czech Republic 
DEU Germany 
DNK Denmark 
ESP Spain 
EST Estonia 
FIN Finland 
FRA France 
GBR United Kingdom 
GRC Greece 
HKG Hong Kong-China 
HRV Croatia 
HUN Hungary 
IDN Indonesia 
IRL Ireland 
ISL Iceland 
ISR Israel 
ITA Italy 

JOR Jordan 
JPN Japan 

Country abbr.  Country name 
KAZ Kazakhstan 
KOR Korea 
LTU Lithuania 
LUX Luxembourg 
LVA Latvia 

MAC Macao-China 
MEX Mexico 
MNE Montenegro 
MYS Malaysia 
NLD Netherlands 
NOR Norway 
NZL New Zealand 
PER Peru 
POL Poland 
PRT Portugal 
QAT Qatar 
ROU Romania 
RUS Russian Federation 
SGP Singapore 
SRB Serbia 
SVK Slovak Republic 
SVN Slovenia 
SWE Sweden 
TAP Chinese Taipei 
THA Thailand 
TUN Tunisia 
TUR Turkey 
URY Uruguay 
USA United States of America 

VNM Viet Nam 
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Table A.2. Total and final sample sizes by country 

Country 
Total Sample Final Sample 

Number of 
Schools 

Number of 
Students 

Number of 
Schools 

Number of 
Students 

ARE 458 11500 457 7503 
ARG 226 5908 226 3726 
AUS 775 14481 772 9450 
AUT 191 4755 185 3115 
BEL 287 8597 273 5475 
BGR 188 5282 188 3401 
BRA 839 19204 831 12403 
CAN 885 21544 880 14090 
CHE 411 11229 409 7395 
CHL 221 6856 220 4523 
COL 352 9073 349 5839 
CRI 193 4602 192 2863 
CZE 297 5327 281 3465 
DEU 230 5001 217 2805 
DNK 341 7481 337 4841 
ESP 902 25313 896 16656 
EST 206 4779 205 3149 
FIN 311 8829 301 5758 
FRA 226 4613 226 2988 
GBR 507 12659 507 8349 
GRC 188 5125 187 3359 
HKG 148 4670 148 3067 
HRV 163 5008 163 3314 
HUN 204 4810 202 3175 
IDN 209 5622 209 3700 
IRL 183 5016 183 3304 
ISL 134 3508 134 2228 
ISR 172 5055 170 3204 
ITA 1194 31073 1191 20568 
JOR 233 7038 233 4555 
JPN 191 6351 190 4166 
KAZ 218 5808 217 3854 
KOR 156 5033 156 3351 
LTU 216 4618 216 3027 
LUX 42 5258 42 3427 
LVA 211 4306 209 2819 
MAC 45 5335 45 3542 
MEX 1471 33806 1465 22301 
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Country 
Total Sample Final Sample 

Number of 
Schools 

Number of 
Students 

Number of 
Schools 

Number of 
Students 

MNE 51 4744 50 3015 
MYS 164 5197 164 3413 
NLD 179 4460 174 2834 
NOR 197 4686 196 3053 
NZL 177 4291 177 2790 
PER 240 6035 239 3897 
POL 184 4607 182 3057 
PRT 195 5722 195 3716 
QAT 157 10966 154 6764 
ROU 178 5074 178 3365 
RUS 227 5231 227 3454 
SGP 172 5546 172 3687 
SRB 153 4684 152 3007 
SVK 231 4678 224 3021 
SVN 338 5911 302 3755 
SWE 209 4736 205 3095 
TAP 163 6046 163 4004 
THA 239 6606 239 4392 
TUN 153 4407 153 2820 
TUR 170 4848 170 3188 
URY 180 5315 180 3442 
USA 162 4978 162 3258 
VNM 162 4959 162 3269 

TOTAL 17705 468200 17532 305051 
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Figure A.1. PISA 2012 Student Questionnaire Rotated Design 

 

(OECD, 2013a; pg. 194) 
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Table A.3. Q-Matrix used in MIRT and MLMixMIRT models

Item MATHEFF  
Dimension 

MATH  
Dimension 

ST37Q01 1 0 
ST37Q02 1 0 
ST37Q03 1 0 
ST37Q04 1 0 
ST37Q05 1 0 
ST37Q06 1 0 
ST37Q07 1 0 
ST37Q08 1 0 
PM00FQ01 0 1 
PM00GQ01 0 1 
PM00KQ02 0 1 
PM033Q01 0 1 
PM034Q01T 0 1 
PM155Q01 0 1 
PM155Q02D 0 1 
PM155Q03D 0 1 
PM155Q04T 0 1 
PM192Q01T 0 1 
PM273Q01T 0 1 
PM305Q01 0 1 
PM406Q01 0 1 
PM406Q02 0 1 
PM408Q01T 0 1 
PM411Q01 0 1 
PM411Q02 0 1 
PM420Q01T 0 1 
PM423Q01 0 1 
PM442Q02 0 1 
PM446Q01 0 1 
PM446Q02 0 1 
PM447Q01 0 1 
PM462Q01D 0 1 
PM464Q01T 0 1 
PM474Q01 0 1 
PM496Q01T 0 1 
PM496Q02 0 1 
PM559Q01 0 1 
PM564Q01 0 1 
PM564Q02 0 1 

Item MATHEFF  
Dimension 

MATH  
Dimension 

PM571Q01 0 1 
PM603Q01T 0 1 
PM800Q01 0 1 
PM803Q01T 0 1 
PM828Q01 0 1 
PM828Q02 0 1 
PM828Q03 0 1 
PM903Q01 0 1 
PM903Q03 0 1 
PM905Q01T 0 1 
PM905Q02 0 1 
PM906Q01 0 1 
PM906Q02 0 1 
PM909Q01 0 1 
PM909Q02 0 1 
PM909Q03 0 1 
PM915Q01 0 1 
PM915Q02 0 1 
PM918Q01 0 1 
PM918Q02 0 1 
PM918Q05 0 1 
PM919Q01 0 1 
PM919Q02 0 1 
PM923Q01 0 1 
PM923Q03 0 1 
PM923Q04 0 1 
PM924Q02 0 1 
PM934Q01 0 1 
PM934Q02 0 1 
PM936Q01 0 1 
PM936Q02 0 1 
PM939Q01 0 1 
PM939Q02 0 1 
PM942Q01 0 1 
PM942Q02 0 1 
PM942Q03 0 1 
PM943Q01 0 1 
PM943Q02 0 1 
PM948Q01 0 1 
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Item MATHEFF  
Dimension 

MATH  
Dimension 

PM948Q02 0 1 
PM948Q03 0 1 
PM949Q01T 0 1 
PM949Q02T 0 1 
PM949Q03 0 1 
PM953Q02 0 1 
PM953Q03 0 1 
PM953Q04D 0 1 
PM954Q01 0 1 
PM954Q02 0 1 
PM954Q04 0 1 
PM955Q01 0 1 
PM955Q02 0 1 
PM955Q03 0 1 
PM957Q01 0 1 
PM957Q02 0 1 
PM957Q03 0 1 
PM961Q02 0 1 
PM961Q03 0 1 
PM961Q05 0 1 

Item MATHEFF  
Dimension 

MATH  
Dimension 

PM967Q01 0 1 
PM967Q03T 0 1 
PM982Q01 0 1 
PM982Q02 0 1 
PM982Q03T 0 1 
PM982Q04 0 1 
PM985Q01 0 1 
PM985Q02 0 1 
PM985Q03 0 1 
PM991Q01 0 1 
PM991Q02D 0 1 
PM992Q01 0 1 
PM992Q02 0 1 
PM992Q03 0 1 
PM995Q01 0 1 
PM995Q02 0 1 
PM995Q03 0 1 
PM998Q02 0 1 
PM998Q04T 0 1 
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Table A.4. Sample size and mean PV1MATH range by super-school and country (Phase 5) 

Country Super-school ID 
PV1MATH 

Weighted Mean 
Range 

Number of Schools Number of Students 

KAZ 1 [354,385] 24 532 
KAZ 2 (385,396] 15 319 
KAZ 3 (396,404] 16 357 
KAZ 4 (404,416] 15 321 
KAZ 5 (416,429] 16 359 
KAZ 6 (429,439] 15 320 
KAZ 7 (439,458] 16 357 
KAZ 8 (458,482] 15 335 
KAZ 9 (482,588] 24 514 
JOR 1 [255,347] 32 616 
JOR 2 (347,358] 21 410 
JOR 3 (358,369] 21 433 
JOR 4 (369,377] 21 432 
JOR 5 (377,385] 22 441 
JOR 6 (385,397] 21 441 
JOR 7 (397,406] 21 417 
JOR 8 (406,425] 21 449 
JOR 9 (425,606] 32 698 
GRC 1 [321,414] 22 431 
GRC 2 (414,436] 15 311 
GRC 3 (436,452] 14 307 
GRC 4 (452,462] 15 320 
GRC 5 (462,472] 14 320 
GRC 6 (472,478] 15 327 
GRC 7 (478,490] 14 307 
GRC 8 (490,500] 15 319 
GRC 9 (500,602] 22 478 
NLD 1 [360,448] 21 359 
NLD 2 (448,469] 14 241 
NLD 3 (469,493] 13 229 
NLD 4 (493,511] 14 248 
NLD 5 (511,548] 13 232 
NLD 6 (548,571] 14 241 
NLD 7 (571,592] 14 255 
NLD 8 (592,608] 13 237 
NLD 9 (608,671] 21 364 
PRT 1 [370,416] 23 455 
PRT 2 (416,450] 15 324 
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Country Super-school ID 
PV1MATH 

Weighted Mean 
Range 

Number of Schools Number of Students 

PRT 3 (450,470] 15 323 
PRT 4 (470,486] 15 324 
PRT 5 (486,502] 14 306 
PRT 6 (502,512] 15 336 
PRT 7 (512,527] 15 341 
PRT 8 (527,543] 15 339 
PRT 9 (543,609] 23 523 
TAP 1 [371,475] 25 565 
TAP 2 (475,504] 16 386 
TAP 3 (504,529] 16 399 
TAP 4 (529,548] 16 408 
TAP 5 (548,557] 16 395 
TAP 6 (557,583] 16 397 
TAP 7 (583,610] 16 398 
TAP 8 (610,632] 16 410 
TAP 9 (632,742] 24 622 
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Table A.5. Sample size by country (Phase 6)

Country Number of 
Schools 

Number of 
Students 

ARE 448 3681 
ARG 224 1808 
AUS 768 4668 
AUT 181 1554 
BEL 271 2675 
BGR 184 1671 
BRA 808 6030 
CAN 871 6958 
CHE 404 3690 
CHL 216 2264 
COL 345 2790 
CRI 192 1446 
CZE 280 1700 
DEU 215 1406 
DNK 337 2395 
ESP 892 8276 
EST 201 1587 
FIN 298 2817 
FRA 226 1507 
GBR 507 4165 
GRC 183 1667 
HKG 148 1512 
HRV 163 1648 
HUN 193 1584 
IDN 209 1823 
IRL 183 1650 
ISL 127 1117 
ISR 169 1580 
ITA 1166 10267 
JOR 233 2247 
JPN 189 2085 
KAZ 215 1912 
KOR 156 1685 
LTU 214 1524 
LUX 42 1683 
LVA 205 1389 
MAC 45 1765 
MEX 1427 11082 
MNE 50 1482 

Country Number of 
Schools 

Number of 
Students 

MYS 164 1683 
NLD 174 1422 
NOR 194 1505 
NZL 176 1381 
PER 238 1856 
POL 178 1512 
PRT 195 1848 
QAT 150 3230 
ROU 178 1687 
RUS 223 1724 
SGP 172 1831 
SRB 152 1488 
SVK 224 1491 
SVN 294 1850 
SWE 201 1508 
TAP 163 1994 
THA 239 2190 
TUN 151 1386 
TUR 166 1571 
URY 177 1661 
USA 160 1619 
VNM 162 1628 

TOTAL 17316 150855 
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Table A.6. Correlation estimates from the OLS models employed in Phase 1 

Country Std. Regression Coef. (Corr. Est.) SE 
ARE 0.36 0.01 
ARG 0.21 0.02 
AUS 0.59 0.01 
AUT 0.53 0.02 
BEL 0.46 0.01 
BGR 0.29 0.02 
BRA 0.30 0.01 
CAN 0.56 0.01 
CHE 0.59 0.01 
CHL 0.34 0.01 
COL 0.15 0.01 
CRI 0.24 0.02 
CZE 0.53 0.02 
DEU 0.55 0.02 
DNK 0.55 0.01 
ESP 0.50 0.01 
EST 0.53 0.02 
FIN 0.52 0.01 
FRA 0.54 0.02 
GBR 0.59 0.01 
GRC 0.47 0.02 
HKG 0.55 0.02 
HRV 0.55 0.01 
HUN 0.61 0.02 
IDN 0.17 0.02 
IRL 0.55 0.02 
ISL 0.51 0.02 
ISR 0.47 0.02 
ITA 0.50 0.01 
JOR 0.28 0.02 
JPN 0.58 0.01 
KAZ 0.26 0.02 
KOR 0.62 0.01 
LTU 0.53 0.02 
LUX 0.51 0.02 
LVA 0.50 0.02 
MAC 0.51 0.01 
MEX 0.32 0.01 
MNE 0.31 0.02 
MYS 0.39 0.02 
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Country Std. Regression Coef. (Corr. Est.) SE 
NLD 0.47 0.02 
NOR 0.59 0.02 
NZL 0.58 0.02 
PER 0.21 0.02 
POL 0.63 0.01 
PRT 0.63 0.01 
QAT 0.28 0.01 
ROU 0.36 0.02 
RUS 0.49 0.02 
SGP 0.56 0.01 
SRB 0.41 0.02 
SVK 0.53 0.02 
SVN 0.50 0.02 
SWE 0.52 0.02 
TAP 0.66 0.01 
THA 0.22 0.02 
TUN 0.31 0.02 
TUR 0.46 0.02 
URY 0.33 0.02 
USA 0.56 0.02 
VNM 0.50 0.02 
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Table A.7. Descriptive statistics for the item response data employed in Phase 2 and Phase 4 

Item Number of 
categories 

Number of examinees who tried/responded to the category Item-total corr. 
(MATHEFF) 

Item-total corr. 
(MATH) tried 0 1 2 3 

ST37Q01 4 61906.35 2361.13 12113.29 26968.46 20463.46 0.5160 
 

ST37Q02 4 61890.43 2364.44 10683.78 24828.47 24013.73 0.6156 
 

ST37Q03 4 61736.89 3432.70 16166.47 23340.86 18796.86 0.6478 
 

ST37Q04 4 61636.77 2463.95 11747.92 26597.17 20827.73 0.5586 
 

ST37Q05 4 61586.26 2265.55 7066.31 18462.58 33791.83 0.5714 
 

ST37Q06 4 61701.77 5470.60 20832.51 20781.90 14616.76 0.5987 
 

ST37Q07 4 61779.09 3909.81 12294.90 20997.64 24576.73 0.5519 
 

ST37Q08 4 61797.59 5425.57 21143.00 22583.94 12645.08 0.5328 
 

PM00FQ01 2 14358.89 8250.10 6108.79 
   

0.5177 
PM00GQ01 2 18671.66 17202.09 1469.58 

   
0.3365 

PM00KQ02 2 17916.79 15333.43 2583.36 
   

0.3790 
PM033Q01 2 18638.07 5595.44 13042.63 

   
0.3623 

M034Q01T 2 17976.62 11356.77 6619.84 
   

0.4789 
PM155Q01 2 18539.48 7268.28 11271.20 

   
0.4907 

M155Q02D 3 18601.77 7450.97 2462.98 8687.82 
  

0.5564 
M155Q03D 3 18529.71 14544.17 2197.90 1787.65 

  
0.5230 

M155Q04T 2 18508.23 9122.99 9385.24 
   

0.4107 
M192Q01T 2 18628.60 11961.74 6666.86 

   
0.5051 

M273Q01T 2 18930.05 9796.32 9133.73 
   

0.3866 
PM305Q01 2 18696.45 8300.33 10396.12 

   
0.3490 

PM406Q01 2 18768.59 14621.93 4146.66 
   

0.5551 
PM406Q02 2 18698.54 15992.28 2706.26 

   
0.5349 

M408Q01T 2 19081.36 12718.58 6362.78 
   

0.4212 
PM411Q01 2 18667.01 10608.22 8058.79 

   
0.5520 

PM411Q02 2 18414.58 10460.95 7953.64 
   

0.3721 
M420Q01T 2 19050.58 10685.45 8365.13 

   
0.4101 

PM423Q01 2 18647.42 4765.49 13881.94 
   

0.2653 
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Item Number of 
categories 

Number of examinees who tried/responded to the category Item-total corr. 
(MATHEFF) 

Item-total corr. 
(MATH) tried 0 1 2 3 

PM442Q02 2 18107.43 11976.11 6131.31 
   

0.5536 
PM446Q01 2 19017.16 7643.49 11373.67 

   
0.5377 

PM446Q02 2 18955.63 17638.27 1317.36 
   

0.3934 
PM447Q01 2 18928.76 7100.67 11828.09 

   
0.4714 

M462Q01D 3 18283.04 15091.33 1673.20 1518.50 
  

0.4238 
M464Q01T 2 18739.81 14770.05 3969.76 

   
0.5411 

PM474Q01 2 18807.90 6166.15 12641.75 
   

0.3689 
M496Q01T 2 18681.43 9641.75 9039.69 

   
0.5076 

PM496Q02 2 18846.95 7438.43 11408.53 
   

0.4450 
PM559Q01 2 18765.09 7432.70 11332.39 

   
0.4038 

PM564Q01 2 18457.14 10474.59 7982.55 
   

0.3541 
PM564Q02 2 18432.76 10414.80 8017.96 

   
0.3775 

PM571Q01 2 18544.84 10520.31 8024.53 
   

0.4585 
M603Q01T 2 18661.20 11044.85 7616.35 

   
0.3687 

PM800Q01 2 18766.63 2404.90 16361.73 
   

0.1968 
M803Q01T 2 18512.65 14249.36 4263.29 

   
0.5434 

PM828Q01 2 18612.29 13745.85 4866.44 
   

0.5042 
PM828Q02 2 18851.48 9085.79 9765.69 

   
0.4346 

PM828Q03 2 18645.76 13681.82 4963.95 
   

0.4232 
PM903Q01 3 14445.84 10055.52 1864.14 2526.18 

  
0.5773 

PM903Q03 2 14426.00 10349.14 4076.86 
   

0.5316 
M905Q01T 2 14589.81 3668.92 10920.89 

   
0.3699 

PM905Q02 2 14383.31 7364.97 7018.34 
   

0.6363 
PM906Q01 2 18423.70 8087.45 10336.25 

   
0.4632 

PM906Q02 3 18339.72 10331.02 2039.08 5969.62 
  

0.6251 
PM909Q01 2 18640.06 2728.43 15911.63 

   
0.3546 

PM909Q02 2 18895.86 8133.20 10762.66 
   

0.4898 
PM909Q03 2 18874.39 13063.54 5810.85 

   
0.6024 

PM915Q01 2 18500.68 11772.23 6728.45 
   

0.4163 
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Item Number of 
categories 

Number of examinees who tried/responded to the category Item-total corr. 
(MATHEFF) 

Item-total corr. 
(MATH) tried 0 1 2 3 

PM915Q02 2 18476.85 6508.74 11968.11 
   

0.4585 
PM918Q01 2 14359.19 1907.47 12451.72 

   
0.2154 

PM918Q02 2 14352.41 3203.31 11149.10 
   

0.4191 
PM918Q05 2 14347.64 3512.14 10835.50 

   
0.3942 

PM919Q01 2 14366.08 2554.96 11811.12 
   

0.3961 
PM919Q02 2 14344.48 8151.01 6193.47 

   
0.3856 

PM923Q01 2 14357.78 6194.92 8162.86 
   

0.4943 
PM923Q03 2 14333.74 7198.39 7135.35 

   
0.4155 

PM923Q04 2 14324.48 11958.44 2366.04 
   

0.4824 
PM924Q02 2 14035.37 5368.98 8666.39 

   
0.5188 

PM934Q01 2 4679.48 3681.26 998.23 
   

0.5263 
PM934Q02 2 4646.09 2538.81 2107.28 

   
0.3531 

PM936Q01 2 4792.45 2878.91 1913.53 
   

0.5245 
PM936Q02 2 4747.53 3032.38 1715.14 

   
0.5438 

PM939Q01 2 4665.13 2524.55 2140.58 
   

0.2623 
PM939Q02 2 4815.26 3160.38 1654.88 

   
0.4596 

PM942Q01 2 4994.79 2625.32 2369.47 
   

0.4187 
PM942Q02 2 4802.57 4139.24 663.34 

   
0.4878 

PM942Q03 3 4766.36 4008.71 193.76 563.89 
  

0.5518 
PM943Q01 2 14214.31 7046.99 7167.31 

   
0.3967 

PM943Q02 2 14184.02 13160.84 1023.17 
   

0.3832 
PM948Q01 2 4850.25 999.04 3851.21 

   
0.2733 

PM948Q02 2 4830.52 1912.20 2918.32 
   

0.3904 
PM948Q03 2 4808.54 4385.52 423.02 

   
0.3711 

M949Q01T 2 19007.19 7136.42 11870.77 
   

0.5132 
M949Q02T 2 18976.99 12921.08 6055.91 

   
0.5116 

PM949Q03 3 18909.74 12763.17 531.63 5614.94 
  

0.5332 
PM953Q02 2 13954.43 7216.29 6738.14 

   
0.5204 

PM953Q03 2 13836.12 6826.50 7009.62 
   

0.5916 
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Item Number of 
categories 

Number of examinees who tried/responded to the category Item-total corr. 
(MATHEFF) 

Item-total corr. 
(MATH) tried 0 1 2 3 

M953Q04D 3 13656.79 10572.42 1157.29 1927.08 
  

0.5648 
PM954Q01 2 14326.77 4902.68 9424.09 

   
0.5253 

PM954Q02 2 14271.86 9769.10 4502.76 
   

0.4919 
PM954Q04 2 14241.19 10491.90 3749.29 

   
0.5318 

PM955Q01 2 18628.39 6265.94 12362.45 
   

0.3693 
PM955Q02 2 18560.79 12673.21 5887.59 

   
0.5044 

PM955Q03 3 18519.70 15951.90 1050.12 1517.69 
  

0.4821 
PM957Q01 2 4751.80 2151.43 2600.36 

   
0.4208 

PM957Q02 2 4732.73 2961.96 1770.77 
   

0.3286 
PM957Q03 2 4718.43 4320.75 397.68 

   
0.3741 

PM961Q02 2 4726.71 4424.50 302.21 
   

0.3177 
PM961Q03 2 4708.72 2671.93 2036.79 

   
0.4226 

PM961Q05 3 4684.25 2237.78 1137.90 1308.56 
  

0.4259 
PM967Q01 2 4810.97 3529.06 1281.91 

   
0.5258 

M967Q03T 2 4562.36 4151.12 411.24 
   

0.2316 
PM982Q01 2 18716.17 3054.21 15661.96 

   
0.2561 

PM982Q02 2 18679.24 13389.76 5289.48 
   

0.3483 
M982Q03T 2 18667.55 7071.51 11596.05 

   
0.3544 

PM982Q04 2 18580.37 9961.47 8618.89 
   

0.4995 
PM985Q01 2 4884.12 965.65 3918.47 

   
0.2440 

PM985Q02 2 4872.35 2884.33 1988.02 
   

0.4965 
PM985Q03 2 4567.66 3299.93 1267.73 

   
0.5152 

PM991Q01 2 4851.88 1929.45 2922.44 
   

0.3990 
M991Q02D 3 4841.11 4525.90 147.20 168.01 

  
0.3865 

PM992Q01 2 18634.49 4887.59 13746.90 
   

0.3861 
PM992Q02 2 18585.28 15148.68 3436.60 

   
0.4560 

PM992Q03 2 18553.56 16922.02 1631.53 
   

0.4400 
PM995Q01 2 14235.36 6116.52 8118.84 

   
0.5719 

PM995Q02 2 14215.28 13617.27 598.02 
   

0.2650 
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Item Number of 
categories 

Number of examinees who tried/responded to the category Item-total corr. 
(MATHEFF) 

Item-total corr. 
(MATH) tried 0 1 2 3 

PM995Q03 2 14111.79 7814.16 6297.63 
   

0.4906 
PM998Q02 2 18461.98 6621.74 11840.24 

   
0.4331 

M998Q04T 2 18393.56 11284.72 7108.84 
   

0.1761 
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Table A.8. Estimated item parameters from the multi-group MIRT model employed in Phase 2 

Item a-param 
(MATHEFF) 

a-param 
(MATH) intercept intercept intercept b-param d-step d-step d-step 

ST37Q01 0.7152 
 

2.7866 1.3859 -0.5248 -1.0001 1.2919 0.1398 -1.4317 
ST37Q02 1.1244 

 
3.6191 1.9900 -0.2616 -0.9325 0.9608 0.1086 -1.0694 

ST37Q03 1.1357 
 

3.4509 1.2746 -0.8002 -0.6777 1.1097 -0.0175 -1.0922 
ST37Q04 0.7960 

 
2.8901 1.4993 -0.5145 -0.9545 1.1813 0.1535 -1.3348 

ST37Q05 1.0307 
 

3.1741 2.1950 0.7484 -1.1638 0.6477 0.0890 -0.7367 
ST37Q06 0.7834 

 
2.3872 0.4000 -0.9736 -0.4539 1.3385 -0.1536 -1.1849 

ST37Q07 0.7364 
 

2.2900 1.1471 -0.0274 -0.9079 0.9214 0.0084 -0.9298 
ST37Q08 0.6064 

 
2.0978 0.3263 -1.0818 -0.4340 1.6010 -0.1176 -1.4834 

PM00FQ01 
 

0.7985 -1.3628 
  

1.0040 
   

PM00GQ01 
 

0.8016 -4.0043 
  

2.9384 
   

PM00KQ02 
 

0.7326 -3.0059 
  

2.4134 
   

PM033Q01 
 

0.5383 0.6002 
  

-0.6558 
   

PM034Q01T 
 

0.7117 -1.3492 
  

1.1152 
   

PM155Q01 
 

0.7730 -0.0020 
  

0.0016 
   

PM155Q02D 
 

0.5356 -1.1447 0.5284 
 

0.3384 -0.9188 0.9188 
 

PM155Q03D 
 

0.7615 -2.8720 -2.3842 
 

2.0302 -0.1884 0.1884 
 

PM155Q04T 
 

0.5507 -0.4160 
  

0.4444 
   

PM192Q01T 
 

0.7777 -1.3917 
  

1.0526 
   

PM273Q01T 
 

0.4942 -0.4550 
  

0.5416 
   

PM305Q01 
 

0.4594 -0.0632 
  

0.0810 
   

PM406Q01 
 

1.1559 -3.0502 
  

1.5523 
   

PM406Q02 
 

1.3857 -4.4789 
  

1.9013 
   

PM408Q01T 
 

0.5823 -1.3032 
  

1.3165 
   

PM411Q01 
 

0.9098 -1.1568 
  

0.7480 
   

PM411Q02 
 

0.4706 -0.7099 
  

0.8873 
   

PM420Q01T 
 

0.5308 -0.6898 
  

0.7645 
   

PM423Q01 
 

0.3966 0.9156 
  

-1.3578 
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Item a-param 
(MATHEFF) 

a-param 
(MATH) intercept intercept intercept b-param d-step d-step d-step 

PM442Q02 
 

0.9385 -1.8553 
  

1.1629 
  

  
PM446Q01 

 
0.9014 -0.0286 

  
0.0187 

   

PM446Q02 
 

1.2097 -5.2997 
  

2.5770 
   

PM447Q01 
 

0.7214 0.1729 
  

-0.1410 
   

PM462Q01D 
 

0.5693 -2.9333 -1.6517 
 

2.3687 -0.6621 0.6621 
 

PM464Q01T 
 

1.0914 -3.0637 
  

1.6512 
   

PM474Q01 
 

0.5518 0.4536 
  

-0.4835 
   

PM496Q01T 
 

0.7484 -0.6170 
  

0.4850 
   

PM496Q02 
 

0.6663 0.1153 
  

-0.1018 
   

PM559Q01 
 

0.5405 0.1121 
  

-0.1220 
   

PM564Q01 
 

0.4381 -0.6295 
  

0.8453 
   

PM564Q02 
 

0.4788 -0.6538 
  

0.8032 
   

PM571Q01 
 

0.6254 -0.7938 
  

0.7466 
   

PM603Q01T 
 

0.4690 -0.7710 
  

0.9671 
   

PM800Q01 
 

0.3696 1.8222 
  

-2.9000 
   

PM803Q01T 
 

1.0924 -2.9471 
  

1.5869 
   

PM828Q01 
 

0.8141 -2.1103 
  

1.5248 
   

PM828Q02 
 

0.5932 -0.3462 
  

0.3433 
   

PM828Q03 
 

0.6230 -1.7852 
  

1.6855 
   

PM903Q01 
 

0.7521 -2.6724 -1.7634 
 

1.7347 -0.3555 0.3555 
 

PM903Q03 
 

0.9704 -2.6001 
  

1.5761 
   

PM905Q01T 
 

0.5958 0.7168 
  

-0.7077 
   

PM905Q02 
 

1.3278 -1.6252 
  

0.7200 
   

PM906Q01 
 

0.6788 -0.2049 
  

0.1776 
   

PM906Q02 
 

0.6850 -1.9344 -0.2154 
 

0.9230 -0.7381 0.7381 
 

PM909Q01 
 

0.8211 1.7868 
  

-1.2800 
   

PM909Q02 
 

0.7473 -0.2116 
  

0.1666 
   

PM909Q03 
 

1.1394 -2.3740 
  

1.2256 
   

PM915Q01 
 

0.5653 -1.1475 
  

1.1941 
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Item a-param 
(MATHEFF) 

a-param 
(MATH) intercept intercept intercept b-param d-step d-step d-step 

PM915Q02 
 

0.7513 0.2673 
  

-0.2093 
   

PM918Q01 
 

0.3933 1.6060 
  

-2.4021 
   

PM918Q02 
 

0.7501 0.8177 
  

-0.6412 
   

PM918Q05 
 

0.6370 0.6890 
  

-0.6362 
   

PM919Q01 
 

0.8359 1.2468 
  

-0.8774 
   

PM919Q02 
 

0.5209 -0.9276 
  

1.0475 
   

PM923Q01 
 

0.7384 -0.4964 
  

0.3955 
   

PM923Q03 
 

0.5601 -0.6770 
  

0.7110 
   

PM923Q04 
 

1.0924 -3.9393 
  

2.1213 
   

PM924Q02 
 

0.8509 -0.3224 
  

0.2229 
   

PM934Q01 
 

1.0537 -1.6640 
  

0.9290 
   

PM934Q02 
 

0.5168 -0.0675 
  

0.0768 
   

PM936Q01 
 

1.0929 -0.2052 
  

0.1105 
   

PM936Q02 
 

1.1337 -0.4688 
  

0.2433 
   

PM939Q01 
 

0.3795 -0.0549 
  

0.0851 
   

PM939Q02 
 

0.7738 -0.5443 
  

0.4137 
   

PM942Q01 
 

0.6814 0.1180 
  

-0.1019 
   

PM942Q02 
 

1.0582 -2.4323 
  

1.3520 
   

PM942Q03 
 

0.7901 -3.0969 -0.1493 
 

1.2083 -1.0972 1.0972 
 

PM943Q01 
 

0.5150 -0.5717 
  

0.6530 
   

PM943Q02 
 

1.2341 -5.6653 
  

2.7005 
   

PM948Q01 
 

0.6013 1.8074 
  

-1.7683 
   

PM948Q02 
 

0.7377 0.8222 
  

-0.6556 
   

PM948Q03 
 

0.9136 -2.8911 
  

1.8615 
   

PM949Q01T 
 

0.8512 0.0924 
  

-0.0639 
   

PM949Q02T 
 

0.7850 -1.7162 
  

1.2860 
   

PM949Q03 
 

0.4627 -3.4479 1.4324 
 

1.2812 -3.1022 3.1022 
 

PM953Q02 
 

0.8040 -1.0464 
  

0.7656 
   

PM953Q03 
 

1.0916 -1.2567 
  

0.6773 
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Item a-param 
(MATHEFF) 

a-param 
(MATH) intercept intercept intercept b-param d-step d-step d-step 

PM953Q04D 
 

0.8697 -3.6023 -2.1428 
 

1.9429 -0.4936 0.4936 
 

PM954Q01 
 

0.9555 -0.0604 
  

0.0372 
   

PM954Q02 
 

0.8132 -2.0521 
  

1.4844 
   

PM954Q04 
 

1.0369 -2.8787 
  

1.6331 
   

PM955Q01 
 

0.5458 0.3833 
  

-0.4132 
   

PM955Q02 
 

0.7721 -1.7329 
  

1.3203 
   

PM955Q03 
 

0.7392 -3.8264 -1.9119 
 

2.2833 -0.7618 0.7618 
 

PM957Q01 
 

0.7360 0.4814 
  

-0.3847 
   

PM957Q02 
 

0.4737 -0.4454 
  

0.5531 
   

PM957Q03 
 

0.8808 -2.9619 
  

1.9781 
   

PM961Q02 
 

0.8485 -3.2376 
  

2.2445 
   

PM961Q03 
 

0.7184 -0.0886 
  

0.0726 
   

PM961Q05 
 

0.4245 -0.4075 0.0114 
 

0.2745 -0.2903 0.2903 
 

PM967Q01 
 

1.0778 -1.1193 
  

0.6109 
   

PM967Q03T 
 

0.5231 -2.4597 
  

2.7659 
   

PM982Q01 
 

0.4514 1.5155 
  

-1.9750 
   

PM982Q02 
 

0.4644 -1.4536 
  

1.8411 
   

PM982Q03T 
 

0.4700 0.2154 
  

-0.2696 
   

PM982Q04 
 

0.7332 -0.7711 
  

0.6187 
   

PM985Q01 
 

0.5066 1.7401 
  

-2.0207 
   

PM985Q02 
 

0.9194 -0.2159 
  

0.1382 
   

PM985Q03 
 

0.9732 -1.1164 
  

0.6747 
   

PM991Q01 
 

0.7213 0.7685 
  

-0.6267 
   

PM991Q02D 
 

0.7433 -3.7656 -1.4445 
 

2.0616 -0.9184 0.9184 
 

PM992Q01 
 

0.6398 0.8394 
  

-0.7718 
   

PM992Q02 
 

0.8374 -2.8132 
  

1.9763 
   

PM992Q03 
 

1.2703 -5.1658 
  

2.3922 
   

PM995Q01 
 

1.0086 -0.7454 
  

0.4347 
   

PM995Q02 
 

0.9292 -5.3938 
  

3.4146 
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Item a-param 
(MATHEFF) 

a-param 
(MATH) intercept intercept intercept b-param d-step d-step d-step 

PM995Q03 
 

0.7311 -1.1721 
  

0.9431 
   

PM998Q02 
 

0.6573 0.2198 
  

-0.1967 
   

PM998Q04T 
 

0.1943 -0.6440 
  

1.9498 
   

 

 

  



233 
 

Table A.9. Correlation estimates and empirical reliabilities from the MIRT models employed in Phase 2 

Country Correlation 
Estimate 

MATH MATHEFF 
EAP 

Variance 
Error 

Variance 
EAP 

Reliability 
EAP 

Variance 
Error 

Variance 
EAP 

Reliability 
ARE 0.45 1.26 0.32 0.80 1.16 0.24 0.83 
ARG 0.28 1.04 0.39 0.73 0.91 0.20 0.82 
AUS 0.66 1.26 0.22 0.85 1.28 0.27 0.83 
AUT 0.60 1.15 0.22 0.84 1.16 0.24 0.83 
BEL 0.53 1.33 0.24 0.85 1.17 0.22 0.84 
BGR 0.33 1.38 0.31 0.82 1.20 0.25 0.83 
BRA 0.38 1.10 0.41 0.73 0.88 0.18 0.83 
CAN 0.62 1.09 0.21 0.84 1.27 0.27 0.82 
CHE 0.65 1.16 0.21 0.84 1.12 0.27 0.80 
CHL 0.43 1.07 0.30 0.78 0.88 0.19 0.82 
COL 0.22 0.98 0.42 0.70 0.73 0.17 0.81 
CRI 0.33 0.84 0.34 0.71 0.81 0.17 0.82 
CZE 0.62 1.20 0.22 0.85 0.97 0.23 0.81 
DEU 0.62 1.18 0.21 0.85 1.13 0.29 0.79 
DNK 0.65 0.99 0.21 0.82 1.00 0.20 0.83 
ESP 0.58 1.14 0.24 0.83 1.02 0.24 0.81 
EST 0.62 0.92 0.19 0.83 0.90 0.20 0.81 
FIN 0.63 1.00 0.20 0.83 1.02 0.19 0.84 
FRA 0.61 1.28 0.24 0.84 1.18 0.24 0.83 
GBR 0.65 1.26 0.24 0.84 1.19 0.25 0.83 
GRC 0.55 1.29 0.30 0.81 1.24 0.22 0.85 
HKG 0.58 1.20 0.23 0.84 1.35 0.30 0.82 
HRV 0.62 1.16 0.24 0.83 1.14 0.26 0.82 
HUN 0.67 1.31 0.26 0.84 1.33 0.29 0.82 
IDN 0.25 1.04 0.46 0.69 0.61 0.17 0.78 
IRL 0.63 1.01 0.21 0.83 1.11 0.23 0.83 
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Country Correlation 
Estimate 

MATH MATHEFF 
EAP 

Variance 
Error 

Variance 
EAP 

Reliability 
EAP 

Variance 
Error 

Variance 
EAP 

Reliability 
ISL 0.57 1.17 0.24 0.83 1.46 0.29 0.84 
ISR 0.52 1.51 0.31 0.83 1.40 0.29 0.83 
ITA 0.59 1.24 0.24 0.84 0.86 0.20 0.81 
JOR 0.34 1.11 0.42 0.73 1.27 0.26 0.83 
JPN 0.64 1.23 0.22 0.85 1.19 0.20 0.85 
KAZ 0.30 0.99 0.30 0.77 0.95 0.25 0.79 
KOR 0.67 1.28 0.22 0.85 1.33 0.22 0.86 
LTU 0.62 1.17 0.24 0.83 1.13 0.24 0.82 
LUX 0.58 1.35 0.25 0.85 1.47 0.30 0.83 
LVA 0.57 1.01 0.21 0.82 0.83 0.19 0.81 
MAC 0.57 1.13 0.21 0.85 1.08 0.26 0.81 
MEX 0.40 0.96 0.34 0.74 0.83 0.18 0.82 
MNE 0.38 1.16 0.36 0.77 1.15 0.23 0.84 
MYS 0.49 1.15 0.34 0.77 0.73 0.17 0.81 
NLD 0.54 1.11 0.21 0.84 1.02 0.20 0.83 
NOR 0.66 1.20 0.24 0.83 1.47 0.27 0.84 
NZL 0.63 1.34 0.24 0.85 1.19 0.23 0.84 
PER 0.29 1.25 0.51 0.71 0.64 0.18 0.78 
POL 0.70 1.17 0.21 0.85 1.27 0.27 0.82 
PRT 0.71 1.28 0.25 0.84 1.23 0.29 0.81 
QAT 0.36 1.59 0.50 0.76 1.59 0.29 0.85 
ROU 0.43 1.12 0.27 0.80 0.91 0.20 0.82 
RUS 0.54 1.17 0.24 0.83 0.94 0.21 0.82 
SGP 0.58 1.36 0.23 0.86 1.27 0.36 0.78 
SRB 0.49 1.26 0.29 0.81 1.07 0.21 0.84 
SVK 0.65 1.44 0.26 0.85 1.02 0.24 0.81 
SVN 0.54 1.13 0.22 0.84 1.24 0.31 0.80 
SWE 0.60 1.21 0.25 0.83 1.16 0.24 0.83 
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Country Correlation 
Estimate 

MATH MATHEFF 
EAP 

Variance 
Error 

Variance 
EAP 

Reliability 
EAP 

Variance 
Error 

Variance 
EAP 

Reliability 
TAP 0.69 1.62 0.24 0.87 1.67 0.33 0.83 
THA 0.32 1.13 0.32 0.78 0.57 0.15 0.79 
TUN 0.41 1.13 0.41 0.73 0.96 0.19 0.83 
TUR 0.54 1.27 0.28 0.82 1.02 0.22 0.82 
URY 0.43 1.25 0.37 0.77 0.86 0.20 0.81 
USA 0.62 1.18 0.23 0.84 1.20 0.27 0.82 
VNM 0.61 1.05 0.22 0.83 0.48 0.14 0.77 
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Table A.10. Parameter estimates from the MLM models employed in Phase 3 

Country 
Unconditional Model Conditional Model 

Intercept 𝝉𝝉𝟎𝟎𝟎𝟎 𝝈𝝈𝟐𝟐 ICC Intercept Std. Regression Coef.  
(Corr. Est.) SE 𝝉𝝉𝟎𝟎𝟎𝟎 𝝈𝝈𝟐𝟐 

ARE -0.02 0.47 0.55 0.46 -0.02 0.26 0.01 0.40 0.49 
ARG -0.12 0.48 0.52 0.48 -0.12 0.18 0.01 0.47 0.49 
AUS 0.05 0.26 0.69 0.28 0.04 0.50 0.01 0.13 0.49 
AUT -0.13 0.52 0.55 0.48 -0.11 0.35 0.01 0.34 0.46 
BEL -0.10 0.53 0.53 0.50 -0.08 0.33 0.01 0.42 0.44 
BGR -0.15 0.56 0.49 0.54 -0.15 0.15 0.01 0.52 0.47 
BRA -0.12 0.45 0.56 0.45 -0.12 0.19 0.01 0.41 0.53 
CAN 0.03 0.19 0.82 0.19 0.03 0.51 0.01 0.11 0.59 
CHE -0.03 0.33 0.65 0.33 -0.01 0.46 0.01 0.19 0.49 
CHL -0.16 0.56 0.47 0.54 -0.14 0.23 0.01 0.47 0.43 
COL -0.09 0.36 0.63 0.36 -0.10 0.11 0.01 0.35 0.62 
CRI -0.04 0.42 0.62 0.40 -0.04 0.15 0.02 0.39 0.60 
CZE -0.15 0.47 0.48 0.49 -0.11 0.37 0.01 0.31 0.39 
DEU -0.06 0.51 0.52 0.50 -0.05 0.39 0.01 0.35 0.39 
DNK 0.08 0.15 0.76 0.17 0.09 0.52 0.01 0.09 0.52 
ESP -0.07 0.16 0.79 0.17 -0.06 0.46 0.01 0.12 0.60 
EST -0.04 0.19 0.81 0.19 -0.02 0.49 0.02 0.12 0.61 
FIN 0.13 0.07 0.84 0.07 0.13 0.51 0.01 0.04 0.59 
FRA -0.12 0.61 0.44 0.58 -0.10 0.34 0.01 0.44 0.35 
GBR 0.01 0.24 0.77 0.24 0.00 0.52 0.01 0.14 0.53 
GRC -0.12 0.40 0.68 0.37 -0.10 0.38 0.01 0.30 0.55 
HKG -0.02 0.43 0.58 0.43 -0.02 0.40 0.01 0.28 0.44 
HRV -0.02 0.43 0.57 0.43 -0.02 0.38 0.01 0.27 0.46 
HUN -0.25 0.73 0.39 0.65 -0.21 0.33 0.01 0.50 0.31 
IDN -0.03 0.48 0.50 0.49 -0.03 0.11 0.02 0.46 0.49 
IRL -0.02 0.18 0.82 0.18 -0.01 0.51 0.02 0.11 0.59 
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Country 
Unconditional Model Conditional Model 

Intercept 𝝉𝝉𝟎𝟎𝟎𝟎 𝝈𝝈𝟐𝟐 ICC Intercept Std. Regression Coef.  
(Corr. Est.) SE 𝝉𝝉𝟎𝟎𝟎𝟎 𝝈𝝈𝟐𝟐 

ISL -0.05 0.12 0.89 0.12 -0.03 0.48 0.02 0.08 0.68 
ISR -0.05 0.43 0.63 0.41 -0.04 0.39 0.01 0.33 0.49 
ITA -0.15 0.55 0.50 0.52 -0.13 0.31 0.01 0.41 0.42 
JOR -0.03 0.34 0.67 0.33 -0.03 0.22 0.01 0.31 0.63 
JPN -0.03 0.56 0.46 0.55 -0.02 0.32 0.01 0.35 0.39 
KAZ 0.04 0.39 0.61 0.39 0.04 0.19 0.02 0.36 0.58 
KOR -0.03 0.39 0.61 0.39 -0.02 0.46 0.01 0.18 0.46 
LTU -0.10 0.32 0.70 0.31 -0.07 0.45 0.02 0.21 0.53 
LUX -0.01 0.33 0.69 0.32 0.00 0.39 0.02 0.21 0.55 
LVA -0.12 0.30 0.71 0.30 -0.11 0.43 0.02 0.22 0.56 
MAC -0.17 0.44 0.70 0.38 -0.14 0.41 0.01 0.28 0.55 
MEX -0.09 0.36 0.64 0.36 -0.09 0.25 0.01 0.32 0.59 
MNE -0.09 0.35 0.66 0.35 -0.08 0.24 0.02 0.32 0.61 
MYS -0.01 0.31 0.69 0.31 -0.01 0.31 0.02 0.26 0.60 
NLD -0.02 0.63 0.37 0.63 -0.02 0.27 0.02 0.51 0.31 
NOR 0.00 0.13 0.88 0.13 0.00 0.58 0.02 0.08 0.58 
NZL -0.05 0.25 0.76 0.25 -0.04 0.51 0.02 0.14 0.55 
PER -0.13 0.48 0.55 0.47 -0.13 0.17 0.01 0.48 0.52 
POL 0.01 0.22 0.79 0.22 0.00 0.58 0.01 0.11 0.50 
PRT -0.05 0.32 0.69 0.32 -0.03 0.54 0.01 0.15 0.46 
QAT -0.04 0.48 0.53 0.47 -0.05 0.17 0.01 0.44 0.50 
ROU -0.01 0.50 0.56 0.47 -0.01 0.21 0.02 0.43 0.52 
RUS -0.07 0.31 0.71 0.30 -0.05 0.41 0.02 0.22 0.57 
SGP -0.01 0.36 0.64 0.36 -0.01 0.42 0.01 0.21 0.50 
SRB -0.03 0.48 0.54 0.47 -0.04 0.27 0.01 0.40 0.48 
SVK -0.13 0.44 0.52 0.46 -0.10 0.37 0.01 0.30 0.41 
SVN -0.14 0.56 0.44 0.56 -0.12 0.27 0.01 0.44 0.39 
SWE 0.01 0.14 0.88 0.13 0.00 0.50 0.02 0.08 0.66 
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Country 
Unconditional Model Conditional Model 

Intercept 𝝉𝝉𝟎𝟎𝟎𝟎 𝝈𝝈𝟐𝟐 ICC Intercept Std. Regression Coef.  
(Corr. Est.) SE 𝝉𝝉𝟎𝟎𝟎𝟎 𝝈𝝈𝟐𝟐 

TAP -0.03 0.45 0.58 0.44 -0.02 0.49 0.01 0.20 0.41 
THA -0.05 0.42 0.46 0.48 -0.05 0.16 0.01 0.38 0.44 
TUN -0.04 0.50 0.51 0.49 -0.04 0.18 0.01 0.44 0.48 
TUR -0.13 0.60 0.37 0.62 -0.12 0.21 0.01 0.50 0.34 
URY -0.11 0.45 0.58 0.44 -0.10 0.24 0.01 0.40 0.53 
USA -0.02 0.24 0.78 0.23 -0.01 0.49 0.02 0.14 0.57 
VNM -0.09 0.56 0.50 0.53 -0.09 0.33 0.01 0.43 0.42 
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Table A.11. Correlation estimates, class sizes, and class means from the MLMixMIRT models employed in Phase 4 

Country 
High Math Class Low Math Class 

Correlation 
Estimate Class Size MATH 

Mean 
MATHEFF 

Mean 
Correlation 

Estimate Class Size MATH 
Mean 

MATHEFF 
Mean 

ARE 0.59 0.55 -0.27 0.87 0.14 0.45 -1.38 0.51 
ARG 0.51 0.58 -0.76 0.27 -0.04 0.42 -1.54 0.58 
AUS 0.62 0.63 0.06 0.97 0.42 0.37 -0.62 0.50 
AUT 0.58 0.57 0.28 1.06 0.28 0.43 -0.82 0.26 
BEL 0.41 0.53 0.52 1.36 0.23 0.47 -0.74 0.16 
BGR 0.57 0.45 -0.08 0.57 -0.11 0.55 -0.89 0.60 
BRA 0.59 0.57 -0.85 0.28 -0.02 0.43 -1.56 0.37 
CAN 0.50 0.65 0.18 1.01 0.44 0.35 -0.48 0.04 
CHE 0.60 0.47 0.63 2.03 0.44 0.53 -0.46 0.49 
CHL 0.61 0.57 -0.48 0.45 -0.01 0.43 -1.62 0.93 
COL 0.53 0.45 -0.79 0.52 -0.07 0.55 -2.06 0.26 
CRI 0.51 0.55 -0.83 0.29 -0.03 0.45 -1.34 0.65 
CZE 0.63 0.53 0.30 0.90 0.30 0.47 -1.02 0.42 
DEU 0.61 0.55 0.49 1.33 0.45 0.45 -0.77 0.55 
DNK 0.72 0.37 -0.19 2.23 0.57 0.63 -0.29 0.45 
ESP 0.49 0.67 -0.12 1.13 0.40 0.33 -0.74 0.09 
EST 0.72 0.53 0.12 1.85 0.40 0.47 -0.23 0.45 
FIN 0.59 0.61 0.20 0.90 0.34 0.39 -0.41 -0.09 
FRA 0.61 0.58 0.28 1.14 0.25 0.42 -1.33 0.23 
GBR 0.54 0.45 0.31 2.19 0.43 0.55 -1.09 0.37 
GRC 0.51 0.59 -0.28 1.11 0.16 0.41 -1.21 0.04 
HKG 0.42 0.49 0.80 3.82 0.52 0.51 -0.21 0.59 
HRV 0.59 0.66 -0.33 0.89 0.52 0.34 -1.26 0.46 
HUN 0.62 0.61 0.02 1.82 0.18 0.39 -2.47 0.34 
IDN 0.32 0.50 -1.09 0.55 -0.08 0.50 -1.68 0.96 
IRL 0.64 0.56 -0.04 0.78 0.34 0.44 -0.58 0.76 
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Country 
High Math Class Low Math Class 

Correlation 
Estimate Class Size MATH 

Mean 
MATHEFF 

Mean 
Correlation 

Estimate Class Size MATH 
Mean 

MATHEFF 
Mean 

ISL 0.64 0.74 -0.15 0.75 0.39 0.26 -0.76 2.02 
ISR 0.64 0.60 -0.06 0.97 0.27 0.40 -1.30 0.59 
ITA 0.50 0.62 0.05 1.10 0.25 0.38 -0.91 0.17 
JOR 0.56 0.74 -0.95 0.46 0.12 0.26 -1.69 2.66 
JPN 0.56 0.28 0.24 2.79 0.66 0.72 0.05 0.09 
KAZ 0.37 0.52 -0.38 0.98 -0.03 0.48 -0.76 1.30 
KOR 0.64 0.51 0.53 1.16 0.56 0.49 -0.12 -0.21 
LTU 0.69 0.55 0.01 0.80 0.26 0.45 -0.96 0.55 
LUX 0.50 0.50 0.29 1.54 0.25 0.50 -0.92 0.30 
LVA 0.59 0.55 0.06 0.82 0.21 0.45 -0.80 0.43 
MAC 0.63 0.77 0.15 0.84 0.47 0.23 0.04 4.19 
MEX 0.52 0.61 -0.68 0.54 0.07 0.39 -1.04 0.71 
MNE 0.52 0.61 -0.79 0.42 0.05 0.39 -1.37 0.79 
MYS 0.47 0.43 -0.38 0.86 0.16 0.57 -1.62 0.37 
NLD 0.50 0.54 0.60 0.95 0.37 0.46 -0.80 0.29 
NOR 0.68 0.85 -0.28 0.60 0.67 0.15 -0.44 4.72 
NZL 0.63 0.61 0.02 0.76 0.39 0.39 -0.67 0.44 
PER 0.46 0.39 -0.72 0.65 -0.10 0.61 -1.93 0.64 
POL 0.72 0.62 0.14 0.91 0.61 0.38 -0.49 0.65 
PRT 0.60 0.51 0.24 2.07 0.43 0.49 -1.25 0.56 
QAT 0.57 0.69 -0.89 0.48 -0.04 0.31 -1.83 2.12 
ROU 0.54 0.61 -0.26 0.55 -0.01 0.39 -0.78 0.50 
RUS 0.55 0.63 -0.11 0.72 0.30 0.37 -0.62 0.38 
SGP 0.52 0.36 0.94 4.12 0.48 0.64 0.02 0.94 
SRB 0.61 0.59 -0.30 0.46 0.03 0.41 -0.99 0.90 
SVK 0.61 0.56 0.18 1.54 0.26 0.44 -1.38 0.36 
SVN 0.41 0.45 0.46 2.33 0.20 0.55 -0.88 0.65 
SWE 0.36 0.45 0.24 2.24 0.19 0.55 -1.05 0.30 
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Country 
High Math Class Low Math Class 

Correlation 
Estimate Class Size MATH 

Mean 
MATHEFF 

Mean 
Correlation 

Estimate Class Size MATH 
Mean 

MATHEFF 
Mean 

TAP 0.73 0.61 0.27 0.81 0.70 0.39 0.25 4.06 
THA 0.46 0.45 -0.49 0.51 0.03 0.55 -1.21 0.83 
TUN 0.57 0.42 -0.66 0.35 -0.07 0.58 -1.45 0.27 
TUR 0.56 0.40 0.02 1.07 0.16 0.60 -1.42 0.42 
URY 0.53 0.56 -0.45 0.46 -0.04 0.44 -1.82 0.42 
USA 0.61 0.72 -0.24 0.90 0.31 0.28 -0.91 0.90 
VNM 0.50 0.60 0.36 1.07 0.06 0.40 -0.66 0.29 
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Table A.12. Empirical reliabilities for the High Math Class from the MLMixMIRT models employed in Phase 4 

Country 

High Math Class 
MATH MATHEFF 

EAP 
Variance 

Error 
Variance 

EAP 
Reliability 

EAP 
Variance 

Error 
Variance 

EAP 
Reliability 

ARE 0.58 0.14 0.80 0.61 0.18 0.78 
ARG 0.57 0.17 0.77 0.24 0.09 0.74 
AUS 0.73 0.12 0.85 0.96 0.21 0.82 
AUT 0.45 0.11 0.81 0.76 0.21 0.79 
BEL 0.36 0.11 0.77 1.27 0.27 0.83 
BGR 0.60 0.12 0.83 0.68 0.15 0.82 
BRA 0.68 0.19 0.78 0.32 0.10 0.77 
CAN 0.56 0.11 0.83 0.58 0.20 0.74 
CHE 0.31 0.11 0.74 0.98 0.32 0.75 
CHL 0.61 0.15 0.80 0.49 0.12 0.81 
COL 0.61 7.29 0.08 0.48 0.12 0.80 
CRI 0.69 0.22 0.76 0.34 0.09 0.78 
CZE 0.46 0.10 0.82 0.62 0.16 0.79 
DEU 0.35 0.10 0.78 0.65 0.22 0.74 
DNK 0.99 0.17 0.86 2.64 0.32 0.89 
ESP 0.58 0.12 0.83 0.54 0.18 0.75 
EST 0.67 0.11 0.85 2.19 0.34 0.87 
FIN 0.57 0.12 0.83 0.89 0.17 0.84 
FRA 0.42 0.11 0.80 0.91 0.23 0.80 
GBR 0.43 0.10 0.80 1.62 0.37 0.81 
GRC 0.65 0.17 0.79 0.74 0.17 0.81 
HKG 0.39 0.13 0.74 3.18 0.75 0.81 
HRV 0.77 0.14 0.85 0.59 0.18 0.76 
HUN 0.49 0.11 0.82 1.12 0.32 0.78 
IDN 0.66 0.23 0.74 0.42 0.13 0.77 
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Country 

High Math Class 
MATH MATHEFF 

EAP 
Variance 

Error 
Variance 

EAP 
Reliability 

EAP 
Variance 

Error 
Variance 

EAP 
Reliability 

IRL 0.66 0.13 0.84 0.67 0.17 0.80 
ISL 0.70 0.14 0.83 0.70 0.17 0.81 
ISR 0.63 0.13 0.83 0.96 0.21 0.82 
ITA 0.49 0.11 0.82 0.89 0.21 0.81 
JOR 0.54 0.19 0.74 0.38 0.14 0.73 
JPN 0.94 0.13 0.88 13.36 0.73 0.95 
KAZ 0.44 0.13 0.78 0.70 0.21 0.77 
KOR 0.55 0.12 0.82 1.25 0.23 0.84 
LTU 0.56 0.11 0.84 0.73 0.19 0.80 
LUX 0.41 0.10 0.80 0.85 0.28 0.75 
LVA 0.49 0.11 0.82 0.75 0.18 0.81 
MAC 0.55 0.11 0.84 0.75 0.17 0.82 
MEX 0.58 0.17 0.77 0.39 0.12 0.77 
MNE 0.70 0.18 0.79 0.42 0.13 0.77 
MYS 0.45 0.13 0.78 0.74 0.19 0.80 
NLD 0.33 0.11 0.75 0.87 0.20 0.82 
NOR 0.74 0.15 0.83 0.61 0.14 0.82 
NZL 0.84 0.13 0.86 0.99 0.19 0.84 
PER 0.72 0.25 0.75 0.62 0.15 0.81 
POL 0.63 0.11 0.85 0.75 0.23 0.76 
PRT 0.39 0.10 0.79 1.33 0.39 0.77 
QAT 0.83 0.22 0.79 0.49 0.14 0.78 
ROU 0.53 0.11 0.82 0.39 0.14 0.74 
RUS 0.62 0.13 0.83 0.61 0.16 0.79 
SGP 0.62 0.17 0.78 3.95 0.78 0.83 
SRB 0.70 0.14 0.83 0.61 0.14 0.81 
SVK 0.46 0.10 0.82 1.05 0.28 0.79 
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Country 

High Math Class 
MATH MATHEFF 

EAP 
Variance 

Error 
Variance 

EAP 
Reliability 

EAP 
Variance 

Error 
Variance 

EAP 
Reliability 

SVN 0.32 0.10 0.76 1.68 0.59 0.74 
SWE 0.44 1.14 0.28 1.00 0.32 0.76 
TAP 0.82 0.13 0.86 1.02 0.21 0.83 
THA 0.77 0.15 0.84 0.39 0.11 0.78 
TUN 0.62 0.20 0.76 0.49 0.13 0.79 
TUR 0.40 0.10 0.81 0.73 0.25 0.75 
URY 0.67 0.16 0.80 0.37 0.11 0.77 
USA 0.76 0.14 0.85 0.79 0.19 0.80 
VNM 0.36 0.10 0.79 0.95 0.21 0.82 

 
 
  



245 
 

Table A.13. Empirical reliabilities for the Low Math Class from the MLMixMIRT models employed in Phase 4 

Country 

Low Math Class 
MATH MATHEFF 

EAP 
Variance 

Error 
Variance 

EAP 
Reliability 

EAP 
Variance 

Error 
Variance 

EAP 
Reliability 

ARE 0.53 0.26 0.67 0.93 0.16 0.85 
ARG 0.55 0.26 0.68 3.06 0.32 0.91 
AUS 0.67 0.17 0.80 0.93 0.19 0.83 
AUT 0.55 0.18 0.76 0.49 0.12 0.80 
BEL 0.55 0.18 0.76 0.42 0.10 0.81 
BGR 0.47 0.17 0.74 0.98 0.20 0.83 
BRA 0.64 0.32 0.67 3.18 0.33 0.91 
CAN 0.57 0.14 0.80 0.71 0.15 0.83 
CHE 0.53 0.15 0.78 0.53 0.13 0.81 
CHL 0.50 0.23 0.68 1.35 0.22 0.86 
COL 0.50 0.35 0.59 0.93 0.18 0.84 
CRI 0.44 0.20 0.69 1.32 0.20 0.87 
CZE 0.57 0.17 0.77 0.55 0.13 0.81 
DEU 0.48 0.15 0.76 0.54 0.13 0.80 
DNK 0.58 0.13 0.82 0.55 0.12 0.82 
ESP 0.65 0.17 0.80 0.46 0.13 0.78 
EST 0.47 0.12 0.80 0.38 0.10 0.79 
FIN 0.58 0.14 0.81 0.76 0.14 0.84 
FRA 0.63 0.24 0.72 0.45 0.10 0.81 
GBR 0.81 0.26 0.76 0.63 0.12 0.84 
GRC 0.80 0.32 0.71 0.57 0.11 0.84 
HKG 0.68 0.15 0.82 0.85 0.16 0.85 
HRV 0.85 0.24 0.78 0.47 0.16 0.74 
HUN 1.21 0.51 0.71 0.79 0.14 0.85 
IDN 0.69 0.31 0.69 5.80 0.50 0.92 
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Country 

Low Math Class 
MATH MATHEFF 

EAP 
Variance 

Error 
Variance 

EAP 
Reliability 

EAP 
Variance 

Error 
Variance 

EAP 
Reliability 

IRL 0.63 0.15 0.80 0.55 0.16 0.77 
ISL 0.86 0.18 0.83 17.11 0.75 0.96 
ISR 0.81 0.33 0.71 0.87 0.19 0.82 
ITA 0.52 0.16 0.76 0.46 0.11 0.81 
JOR 0.66 0.29 0.70 12.01 0.51 0.96 
JPN 0.69 0.12 0.85 0.58 0.10 0.85 
KAZ 0.33 0.15 0.69 1.75 0.27 0.87 
KOR 0.85 0.14 0.86 1.12 0.18 0.86 
LTU 0.48 0.15 0.76 0.59 0.13 0.82 
LUX 0.47 0.15 0.76 0.63 0.13 0.83 
LVA 0.55 0.18 0.75 0.39 0.12 0.77 
MAC 0.82 0.13 0.86 11.52 0.70 0.94 
MEX 0.45 0.21 0.68 4.34 0.33 0.93 
MNE 0.59 0.24 0.71 5.40 0.37 0.94 
MYS 0.45 0.21 0.68 0.77 0.14 0.85 
NLD 0.53 0.18 0.75 0.94 0.15 0.86 
NOR 1.41 0.23 0.86 26.77 0.87 0.97 
NZL 0.74 0.17 0.81 0.71 0.19 0.79 
PER 0.84 0.47 0.64 0.90 0.19 0.82 
POL 0.72 0.15 0.82 0.58 0.15 0.80 
PRT 0.67 0.27 0.71 0.79 0.15 0.84 
QAT 0.60 0.43 0.58 19.35 0.59 0.97 
ROU 0.35 0.16 0.69 2.09 0.25 0.89 
RUS 0.61 0.16 0.79 0.89 0.21 0.81 
SGP 0.60 0.11 0.84 0.79 0.23 0.78 
SRB 0.70 0.21 0.77 1.37 0.22 0.86 
SVK 0.63 0.23 0.73 0.58 0.14 0.81 
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Country 

Low Math Class 
MATH MATHEFF 

EAP 
Variance 

Error 
Variance 

EAP 
Reliability 

EAP 
Variance 

Error 
Variance 

EAP 
Reliability 

SVN 0.45 0.18 0.72 0.73 0.16 0.82 
SWE 0.56 0.20 0.74 0.60 0.12 0.83 
TAP 1.05 0.14 0.88 20.26 0.87 0.96 
THA 0.54 0.25 0.68 3.69 0.36 0.91 
TUN 0.51 0.27 0.65 0.47 0.12 0.79 
TUR 0.55 0.25 0.68 0.67 0.13 0.84 
URY 0.75 0.37 0.67 1.94 0.28 0.88 
USA 0.64 0.18 0.79 1.37 0.27 0.84 
VNM 0.34 0.13 0.72 0.42 0.13 0.77 
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Table A.14. Correlation estimates by super-school and country from the OLS models employed in Phase 5 

Country Super-school ID Std. Regression Coef. 
(Corr. Est.) SE N PV1MATH  

Weighted Mean 
MATHEFF  

Weighted Mean 
KAZ 1 0.10 0.05 532 371.78 0.02 
KAZ 2 0.26 0.07 319 390.49 0.08 
KAZ 3 0.20 0.06 357 400.20 -0.15 
KAZ 4 0.20 0.07 321 411.16 0.00 
KAZ 5 0.16 0.06 359 422.79 0.13 
KAZ 6 0.33 0.07 320 433.61 0.18 
KAZ 7 0.28 0.06 357 446.86 0.20 
KAZ 8 0.30 0.06 335 467.03 0.40 
KAZ 9 0.29 0.06 514 516.11 0.41 
JOR 1 0.09 0.05 616 325.00 -0.04 
JOR 2 0.27 0.05 410 352.08 -0.18 
JOR 3 0.25 0.05 433 363.74 -0.07 
JOR 4 0.21 0.06 432 373.31 -0.06 
JOR 5 0.30 0.05 441 381.76 -0.18 
JOR 6 0.32 0.06 441 393.45 -0.03 
JOR 7 0.34 0.06 417 401.46 -0.08 
JOR 8 0.32 0.05 449 415.35 0.06 
JOR 9 0.34 0.04 698 467.19 0.29 
GRC 1 0.31 0.05 431 365.48 -0.72 
GRC 2 0.35 0.06 311 428.17 -0.34 
GRC 3 0.41 0.05 307 442.13 -0.20 
GRC 4 0.41 0.06 320 457.13 -0.05 
GRC 5 0.42 0.06 320 467.87 -0.09 
GRC 6 0.45 0.06 327 474.52 -0.10 
GRC 7 0.49 0.06 307 483.24 -0.09 
GRC 8 0.48 0.05 319 495.43 -0.01 
GRC 9 0.49 0.04 478 527.21 0.30 
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Country Super-school ID Std. Regression Coef. 
(Corr. Est.) SE N PV1MATH  

Weighted Mean 
MATHEFF  

Weighted Mean 
NLD 1 0.24 0.06 359 414.96 -0.61 
NLD 2 0.44 0.07 241 457.56 -0.49 
NLD 3 0.42 0.07 229 480.45 -0.37 
NLD 4 0.37 0.07 248 503.68 -0.19 
NLD 5 0.46 0.09 232 526.99 -0.24 
NLD 6 0.49 0.06 241 560.91 -0.02 
NLD 7 0.42 0.07 255 582.57 0.05 
NLD 8 0.48 0.07 237 597.73 0.08 
NLD 9 0.48 0.05 364 624.45 0.24 
PRT 1 0.46 0.07 455 396.23 -0.34 
PRT 2 0.61 0.05 324 431.38 -0.12 
PRT 3 0.55 0.05 323 459.80 0.06 
PRT 4 0.61 0.05 324 481.85 0.11 
PRT 5 0.62 0.05 306 495.46 0.43 
PRT 6 0.60 0.05 336 508.51 0.39 
PRT 7 0.58 0.05 341 518.81 0.45 
PRT 8 0.57 0.04 339 533.64 0.62 
PRT 9 0.60 0.04 523 565.27 0.81 
TAP 1 0.54 0.04 565 441.49 -0.71 
TAP 2 0.60 0.04 386 491.86 -0.44 
TAP 3 0.66 0.04 399 514.58 -0.09 
TAP 4 0.53 0.04 408 537.45 0.07 
TAP 5 0.63 0.04 395 553.58 0.22 
TAP 6 0.56 0.04 397 574.46 0.29 
TAP 7 0.56 0.04 398 594.43 0.41 
TAP 8 0.48 0.05 410 620.14 0.68 
TAP 9 0.35 0.04 622 685.68 1.01 
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Table A.15. Correlation estimates and empirical reliabilities by super-school from the MIRT models employed in Phase 5 

Country Super-
school ID 

Correlation 
Estimate 

MATH MATHEFF 
EAP 

Variance 
Error 

Variance 
EAP 

Reliability 
EAP 

Variance 
Error 

Variance 
EAP 

Reliability 
KAZ 1 0.17 1.69 0.94 0.64 1.07 0.22 0.83 
KAZ 2 0.32 1.56 0.82 0.65 0.94 0.20 0.82 
KAZ 3 0.30 1.59 0.80 0.67 0.66 0.16 0.81 
KAZ 4 0.19 1.81 0.83 0.69 0.69 0.17 0.80 
KAZ 5 0.18 1.77 0.72 0.71 0.98 0.21 0.83 
KAZ 6 0.43 1.75 0.62 0.74 0.97 0.22 0.81 
KAZ 7 0.32 1.79 0.63 0.74 1.03 0.23 0.82 
KAZ 8 0.35 1.71 0.59 0.74 1.19 0.28 0.81 
KAZ 9 0.38 1.63 0.53 0.76 1.10 0.27 0.80 
JOR 1 0.05 1.84 1.29 0.59 0.81 0.22 0.79 
JOR 2 0.36 1.47 0.93 0.61 0.65 0.14 0.82 
JOR 3 0.29 1.85 0.91 0.67 0.73 0.17 0.81 
JOR 4 0.21 1.57 0.81 0.66 0.70 0.17 0.80 
JOR 5 0.44 1.86 0.85 0.69 0.53 0.13 0.80 
JOR 6 0.43 1.70 0.71 0.70 0.45 0.13 0.78 
JOR 7 0.48 1.54 0.67 0.70 0.57 0.13 0.81 
JOR 8 0.43 1.92 0.66 0.75 0.59 0.15 0.80 
JOR 9 0.37 2.05 0.54 0.79 0.63 0.20 0.76 
GRC 1 0.33 1.78 0.92 0.66 1.65 0.34 0.83 
GRC 2 0.42 1.86 0.56 0.77 2.40 0.48 0.83 
GRC 3 0.50 1.51 0.49 0.76 2.00 0.43 0.82 
GRC 4 0.43 1.58 0.45 0.78 2.07 0.49 0.81 
GRC 5 0.47 1.68 0.48 0.78 2.24 0.50 0.82 
GRC 6 0.58 1.62 0.39 0.80 1.71 0.42 0.80 
GRC 7 0.58 1.47 0.33 0.82 1.66 0.41 0.80 
GRC 8 0.53 1.50 0.40 0.79 1.77 0.46 0.79 
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Country Super-
school ID 

Correlation 
Estimate 

MATH MATHEFF 
EAP 

Variance 
Error 

Variance 
EAP 

Reliability 
EAP 

Variance 
Error 

Variance 
EAP 

Reliability 
GRC 9 0.56 1.72 0.43 0.80 2.28 0.66 0.78 
NLD 1 0.29 1.54 0.63 0.71 1.60 0.25 0.87 
NLD 2 0.49 1.40 0.41 0.77 1.08 0.19 0.85 
NLD 3 0.44 1.08 0.37 0.74 1.45 0.24 0.86 
NLD 4 0.39 0.95 0.33 0.74 1.22 0.23 0.84 
NLD 5 0.44 1.04 0.29 0.78 1.10 0.22 0.83 
NLD 6 0.60 0.79 0.28 0.74 1.31 0.28 0.82 
NLD 7 0.52 0.71 0.28 0.72 1.13 0.27 0.81 
NLD 8 0.52 0.77 0.27 0.74 0.94 0.25 0.79 
NLD 9 0.50 1.02 0.33 0.76 1.24 0.32 0.80 
PRT 1 0.55 1.53 0.68 0.69 1.37 0.21 0.87 
PRT 2 0.69 1.77 0.51 0.78 1.25 0.21 0.85 
PRT 3 0.60 1.57 0.44 0.78 1.38 0.26 0.84 
PRT 4 0.71 1.70 0.36 0.82 1.56 0.26 0.86 
PRT 5 0.68 1.73 0.33 0.84 1.70 0.36 0.82 
PRT 6 0.62 1.55 0.31 0.84 1.45 0.32 0.82 
PRT 7 0.64 1.48 0.29 0.84 1.40 0.33 0.81 
PRT 8 0.69 1.28 0.27 0.83 1.42 0.39 0.78 
PRT 9 0.65 1.26 0.29 0.81 1.58 0.49 0.76 
TAP 1 0.61 1.25 0.32 0.79 1.23 0.15 0.89 
TAP 2 0.67 1.06 0.21 0.83 1.28 0.16 0.89 
TAP 3 0.69 1.24 0.22 0.85 1.63 0.23 0.88 
TAP 4 0.52 1.09 0.20 0.84 1.49 0.25 0.86 
TAP 5 0.68 1.06 0.19 0.85 1.59 0.27 0.85 
TAP 6 0.55 0.90 0.18 0.83 1.30 0.25 0.84 
TAP 7 0.55 1.06 0.22 0.83 1.38 0.29 0.82 
TAP 8 0.53 0.83 0.21 0.80 1.42 0.38 0.79 
TAP 9 0.45 0.54 0.29 0.65 1.11 0.46 0.70 
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Table A.16. Results from the PCA analysis conducted in Phase 6 

Country Determinant MSA First Principal Component 
Eigenvalue Variance Explained 

ARE 0.00117 0.90 5.61 31.16 
ARG 0.00226 0.87 4.67 25.92 
AUS 0.00007 0.94 7.78 43.22 
AUT 0.00012 0.92 6.96 38.65 
BEL 0.00037 0.91 5.92 32.88 
BGR 0.00040 0.88 5.21 28.96 
BRA 0.00207 0.88 5.19 28.81 
CAN 0.00006 0.94 7.73 42.93 
CHE 0.00024 0.92 6.76 37.56 
CHL 0.00036 0.91 6.24 34.65 
COL 0.00143 0.90 5.47 30.38 
CRI 0.00133 0.89 5.89 32.70 
CZE 0.00016 0.92 6.95 38.63 
DEU 0.00012 0.93 7.19 39.93 
DNK 0.00008 0.95 8.53 47.38 
ESP 0.00057 0.90 6.12 34.02 
EST 0.00014 0.93 7.34 40.77 
FIN 0.00007 0.94 8.13 45.15 
FRA 0.00041 0.91 6.31 35.04 
GBR 0.00016 0.94 7.60 42.23 
GRC 0.00037 0.91 6.48 36.02 
HKG 0.00004 0.93 7.60 42.22 
HRV 0.00026 0.92 6.69 37.14 
HUN 0.00031 0.91 6.38 35.46 
IDN 0.00289 0.87 4.67 25.94 
IRL 0.00011 0.94 7.72 42.91 
ISL 0.00002 0.93 8.12 45.10 
ISR 0.00026 0.90 6.35 35.31 
ITA 0.00081 0.89 5.68 31.57 
JOR 0.00097 0.89 5.56 30.91 
JPN 0.00009 0.91 6.83 37.93 
KAZ 0.00063 0.91 5.94 32.98 
KOR 0.00010 0.92 7.12 39.55 
LTU 0.00057 0.90 6.15 34.16 
LUX 0.00012 0.91 6.62 36.80 
LVA 0.00093 0.91 6.24 34.68 
MAC 0.00007 0.93 7.24 40.24 
MEX 0.00106 0.90 5.67 31.50 
MNE 0.00091 0.89 5.42 30.11 
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Country Determinant MSA First Principal Component 
Eigenvalue Variance Explained 

MYS 0.00355 0.87 4.88 27.12 
NLD 0.00018 0.92 6.91 38.37 
NOR 0.00003 0.95 8.37 46.51 
NZL 0.00020 0.93 7.29 40.48 
PER 0.00285 0.87 4.98 27.69 
POL 0.00006 0.94 7.90 43.90 
PRT 0.00011 0.91 6.98 38.75 
QAT 0.00011 0.92 6.17 34.26 
ROU 0.01280 0.83 3.93 21.83 
RUS 0.00078 0.91 6.32 35.13 
SGP 0.00018 0.92 6.95 38.62 
SRB 0.00041 0.90 6.14 34.10 
SVK 0.00066 0.90 6.13 34.06 
SVN 0.00030 0.90 6.32 35.10 
SWE 0.00014 0.94 7.58 42.11 
TAP 0.00002 0.93 7.41 41.15 
THA 0.00204 0.87 5.00 27.77 
TUN 0.00272 0.88 4.98 27.66 
TUR 0.00056 0.89 5.95 33.05 
URY 0.00040 0.90 6.05 33.59 
USA 0.00005 0.94 7.93 44.03 
VNM 0.00546 0.87 5.09 28.27 
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Table A.17. Correlation estimates from the OLS models employed in Phase 6 

Country 
OLS_matheff OLS_composite 

Std. Regression Coef. 
(Corr. Est.) SE Std. Regression Coef. 

(Corr. Est.) SE 

ARE 0.31 0.02 0.42 0.02 
ARG 0.18 0.03 0.23 0.02 
AUS 0.57 0.01 0.57 0.01 
AUT 0.50 0.02 0.51 0.02 
BEL 0.45 0.02 0.44 0.02 
BGR 0.22 0.02 0.35 0.02 
BRA 0.26 0.02 0.33 0.01 
CAN 0.57 0.01 0.60 0.01 
CHE 0.56 0.02 0.50 0.01 
CHL 0.29 0.02 0.42 0.02 
COL 0.14 0.02 0.28 0.02 
CRI 0.24 0.03 0.34 0.03 
CZE 0.52 0.02 0.53 0.02 
DEU 0.53 0.02 0.50 0.02 
DNK 0.54 0.02 0.58 0.02 
ESP 0.49 0.01 0.50 0.01 
EST 0.52 0.02 0.58 0.02 
FIN 0.51 0.02 0.59 0.02 
FRA 0.55 0.02 0.56 0.02 
GBR 0.56 0.02 0.58 0.01 
GRC 0.47 0.02 0.54 0.02 
HKG 0.53 0.02 0.52 0.02 
HRV 0.53 0.02 0.52 0.02 
HUN 0.58 0.02 0.61 0.02 
IDN 0.18 0.03 0.11 0.03 
IRL 0.52 0.02 0.53 0.02 
ISL 0.53 0.03 0.60 0.02 
ISR 0.46 0.02 0.40 0.02 
ITA 0.48 0.01 0.49 0.01 
JOR 0.24 0.02 0.31 0.02 
JPN 0.56 0.02 0.44 0.02 
KAZ 0.29 0.02 0.33 0.02 
KOR 0.63 0.02 0.62 0.02 
LTU 0.51 0.02 0.59 0.02 
LUX 0.49 0.02 0.51 0.02 
LVA 0.48 0.03 0.57 0.03 
MAC 0.50 0.02 0.49 0.02 
MEX 0.30 0.01 0.41 0.01 



255 
 

Country 
OLS_matheff OLS_composite 

Std. Regression Coef. 
(Corr. Est.) SE Std. Regression Coef. 

(Corr. Est.) SE 

MNE 0.28 0.03 0.34 0.03 
MYS 0.35 0.02 0.37 0.03 
NLD 0.45 0.03 0.37 0.03 
NOR 0.61 0.02 0.68 0.02 
NZL 0.57 0.02 0.58 0.02 
PER 0.22 0.02 0.26 0.02 
POL 0.63 0.02 0.69 0.02 
PRT 0.61 0.02 0.63 0.02 
QAT 0.24 0.02 0.16 0.02 
ROU 0.32 0.03 0.35 0.03 
RUS 0.47 0.02 0.54 0.02 
SGP 0.54 0.02 0.53 0.02 
SRB 0.39 0.03 0.47 0.03 
SVK 0.51 0.02 0.55 0.02 
SVN 0.49 0.02 0.52 0.02 
SWE 0.51 0.02 0.61 0.02 
TAP 0.65 0.02 0.65 0.02 
THA 0.17 0.02 0.17 0.02 
TUN 0.27 0.03 0.33 0.03 
TUR 0.42 0.02 0.39 0.02 
URY 0.31 0.03 0.42 0.02 
USA 0.54 0.02 0.54 0.02 
VNM 0.49 0.02 0.51 0.02 
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Table A.18. Parameter estimates from the MLM models employing MATHEFF only in Phase 6 

Country 
Unconditional Model Conditional Model 

Intercept 𝝉𝝉𝟎𝟎𝟎𝟎 𝝈𝝈𝟐𝟐 ICC Intercept Std. Regression Coef.  
(Corr. Est.) SE 𝝉𝝉𝟎𝟎𝟎𝟎 𝝈𝝈𝟐𝟐 

ARE -0.01 0.45 0.56 0.44 -0.01 0.24 0.01 0.40 0.52 
ARG -0.13 0.44 0.53 0.46 -0.13 0.18 0.02 0.45 0.50 
AUS 0.07 0.26 0.70 0.27 0.05 0.51 0.01 0.14 0.51 
AUT -0.12 0.50 0.57 0.47 -0.09 0.35 0.02 0.34 0.48 
BEL -0.09 0.50 0.55 0.48 -0.08 0.34 0.01 0.40 0.46 
BGR -0.15 0.57 0.49 0.53 -0.14 0.14 0.02 0.54 0.48 
BRA -0.09 0.43 0.57 0.43 -0.09 0.19 0.01 0.40 0.54 
CAN 0.05 0.21 0.80 0.21 0.04 0.52 0.01 0.13 0.59 
CHE 0.01 0.32 0.63 0.34 0.02 0.45 0.02 0.19 0.48 
CHL -0.14 0.50 0.47 0.52 -0.13 0.22 0.02 0.44 0.43 
COL -0.10 0.35 0.62 0.36 -0.10 0.08 0.02 0.34 0.62 
CRI -0.03 0.42 0.62 0.40 -0.03 0.17 0.02 0.39 0.60 
CZE -0.15 0.50 0.45 0.52 -0.11 0.37 0.02 0.34 0.36 
DEU -0.05 0.49 0.52 0.48 -0.05 0.39 0.02 0.34 0.42 
DNK 0.11 0.16 0.73 0.18 0.11 0.53 0.02 0.10 0.50 
ESP -0.07 0.18 0.77 0.19 -0.06 0.44 0.01 0.13 0.60 
EST -0.03 0.21 0.80 0.21 -0.01 0.48 0.02 0.14 0.61 
FIN 0.13 0.07 0.82 0.07 0.13 0.51 0.02 0.04 0.58 
FRA -0.11 0.58 0.46 0.56 -0.09 0.37 0.02 0.40 0.36 
GBR 0.01 0.24 0.78 0.24 0.00 0.50 0.01 0.16 0.56 
GRC -0.09 0.40 0.66 0.37 -0.07 0.38 0.02 0.28 0.54 
HKG -0.02 0.44 0.57 0.43 -0.02 0.39 0.02 0.29 0.46 
HRV -0.02 0.42 0.58 0.42 -0.02 0.38 0.02 0.27 0.47 
HUN -0.22 0.73 0.37 0.66 -0.18 0.33 0.02 0.51 0.30 
IDN -0.04 0.48 0.49 0.50 -0.04 0.12 0.02 0.47 0.48 
IRL -0.01 0.19 0.80 0.19 -0.01 0.48 0.02 0.12 0.60 
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Country 
Unconditional Model Conditional Model 

Intercept 𝝉𝝉𝟎𝟎𝟎𝟎 𝝈𝝈𝟐𝟐 ICC Intercept Std. Regression Coef.  
(Corr. Est.) SE 𝝉𝝉𝟎𝟎𝟎𝟎 𝝈𝝈𝟐𝟐 

ISL -0.04 0.09 0.92 0.08 -0.02 0.52 0.03 0.05 0.68 
ISR -0.06 0.41 0.65 0.39 -0.05 0.40 0.02 0.33 0.50 
ITA -0.13 0.52 0.49 0.51 -0.11 0.32 0.01 0.40 0.42 
JOR -0.02 0.32 0.68 0.32 -0.02 0.21 0.02 0.31 0.64 
JPN -0.01 0.52 0.49 0.52 -0.01 0.33 0.02 0.32 0.42 
KAZ 0.04 0.39 0.62 0.39 0.04 0.22 0.02 0.36 0.58 
KOR -0.03 0.38 0.63 0.38 -0.02 0.51 0.02 0.16 0.46 
LTU -0.08 0.32 0.69 0.32 -0.06 0.46 0.02 0.23 0.51 
LUX -0.02 0.33 0.69 0.33 -0.02 0.38 0.02 0.22 0.56 
LVA -0.12 0.29 0.72 0.29 -0.11 0.44 0.03 0.24 0.55 
MAC -0.17 0.42 0.70 0.38 -0.14 0.40 0.02 0.27 0.55 
MEX -0.08 0.35 0.64 0.35 -0.08 0.24 0.01 0.31 0.59 
MNE -0.06 0.31 0.67 0.32 -0.07 0.21 0.02 0.31 0.63 
MYS -0.01 0.32 0.69 0.32 -0.01 0.30 0.02 0.27 0.61 
NLD -0.01 0.62 0.36 0.63 -0.01 0.26 0.02 0.51 0.31 
NOR 0.00 0.15 0.87 0.15 0.00 0.60 0.02 0.08 0.56 
NZL -0.04 0.21 0.80 0.21 -0.03 0.53 0.02 0.13 0.57 
PER -0.12 0.46 0.58 0.44 -0.12 0.19 0.02 0.45 0.54 
POL -0.01 0.22 0.79 0.22 -0.01 0.59 0.02 0.10 0.51 
PRT -0.03 0.28 0.72 0.28 -0.02 0.54 0.02 0.13 0.49 
QAT -0.05 0.45 0.53 0.46 -0.06 0.16 0.02 0.43 0.51 
ROU -0.01 0.50 0.56 0.47 -0.02 0.20 0.02 0.43 0.54 
RUS -0.05 0.29 0.73 0.28 -0.04 0.41 0.02 0.21 0.60 
SGP -0.01 0.36 0.65 0.35 -0.01 0.40 0.02 0.21 0.53 
SRB -0.03 0.47 0.54 0.47 -0.03 0.27 0.02 0.40 0.48 
SVK -0.12 0.44 0.54 0.45 -0.09 0.39 0.02 0.30 0.43 
SVN -0.10 0.51 0.48 0.52 -0.09 0.29 0.02 0.40 0.42 
SWE 0.00 0.13 0.89 0.13 0.00 0.50 0.02 0.08 0.67 
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Country 
Unconditional Model Conditional Model 

Intercept 𝝉𝝉𝟎𝟎𝟎𝟎 𝝈𝝈𝟐𝟐 ICC Intercept Std. Regression Coef.  
(Corr. Est.) SE 𝝉𝝉𝟎𝟎𝟎𝟎 𝝈𝝈𝟐𝟐 

TAP -0.03 0.43 0.60 0.42 -0.01 0.50 0.02 0.20 0.42 
THA -0.07 0.40 0.46 0.46 -0.06 0.13 0.02 0.38 0.45 
TUN -0.03 0.49 0.52 0.48 -0.04 0.16 0.02 0.45 0.51 
TUR -0.11 0.59 0.36 0.62 -0.11 0.18 0.02 0.51 0.34 
URY -0.10 0.44 0.60 0.42 -0.09 0.24 0.02 0.40 0.55 
USA 0.00 0.22 0.78 0.22 0.00 0.49 0.02 0.14 0.57 
VNM -0.08 0.57 0.50 0.53 -0.08 0.34 0.02 0.44 0.41 
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Table A.19. Parameter estimates from the MLM models employing the composite measure in Phase 6 

Country 
Unconditional Model Conditional Model 

Intercept 𝝉𝝉𝟎𝟎𝟎𝟎 𝝈𝝈𝟐𝟐 ICC Intercept Std. Regression Coef.  
(Corr. Est.) SE 𝝉𝝉𝟎𝟎𝟎𝟎 𝝈𝝈𝟐𝟐 

ARE -0.01 0.45 0.56 0.44 -0.01 0.34 0.01 0.38 0.46 
ARG -0.13 0.44 0.53 0.46 -0.13 0.25 0.02 0.46 0.47 
AUS 0.07 0.26 0.70 0.27 0.05 0.52 0.01 0.17 0.48 
AUT -0.12 0.50 0.57 0.47 -0.09 0.42 0.02 0.38 0.42 
BEL -0.09 0.50 0.55 0.48 -0.08 0.36 0.01 0.43 0.43 
BGR -0.15 0.57 0.49 0.53 -0.14 0.27 0.02 0.51 0.43 
BRA -0.09 0.43 0.57 0.43 -0.10 0.29 0.01 0.41 0.49 
CAN 0.05 0.21 0.80 0.21 0.05 0.56 0.01 0.14 0.53 
CHE 0.01 0.32 0.63 0.34 0.01 0.43 0.01 0.25 0.47 
CHL -0.14 0.50 0.47 0.52 -0.12 0.35 0.02 0.41 0.37 
COL -0.10 0.35 0.62 0.36 -0.11 0.24 0.02 0.32 0.57 
CRI -0.03 0.42 0.62 0.40 -0.03 0.28 0.02 0.37 0.55 
CZE -0.15 0.50 0.45 0.52 -0.12 0.43 0.02 0.36 0.31 
DEU -0.05 0.49 0.52 0.48 -0.05 0.43 0.02 0.41 0.36 
DNK 0.11 0.16 0.73 0.18 0.10 0.56 0.02 0.12 0.44 
ESP -0.07 0.18 0.77 0.19 -0.06 0.47 0.01 0.13 0.56 
EST -0.03 0.21 0.80 0.21 -0.02 0.55 0.02 0.15 0.54 
FIN 0.13 0.07 0.82 0.07 0.12 0.59 0.02 0.05 0.49 
FRA -0.11 0.58 0.46 0.56 -0.10 0.42 0.02 0.43 0.31 
GBR 0.01 0.24 0.78 0.24 0.00 0.52 0.01 0.17 0.54 
GRC -0.09 0.40 0.66 0.37 -0.06 0.46 0.02 0.26 0.48 
HKG -0.02 0.44 0.57 0.43 -0.02 0.41 0.02 0.32 0.43 
HRV -0.02 0.42 0.58 0.42 -0.02 0.40 0.02 0.31 0.44 
HUN -0.22 0.73 0.37 0.66 -0.18 0.39 0.02 0.49 0.26 
IDN -0.04 0.48 0.49 0.50 -0.04 0.11 0.02 0.48 0.48 
IRL -0.01 0.19 0.80 0.19 -0.02 0.50 0.02 0.14 0.57 
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Country 
Unconditional Model Conditional Model 

Intercept 𝝉𝝉𝟎𝟎𝟎𝟎 𝝈𝝈𝟐𝟐 ICC Intercept Std. Regression Coef.  
(Corr. Est.) SE 𝝉𝝉𝟎𝟎𝟎𝟎 𝝈𝝈𝟐𝟐 

ISL -0.04 0.09 0.92 0.08 -0.02 0.60 0.02 0.07 0.58 
ISR -0.06 0.41 0.65 0.39 -0.05 0.35 0.02 0.36 0.53 
ITA -0.13 0.52 0.49 0.51 -0.11 0.37 0.01 0.42 0.38 
JOR -0.02 0.32 0.68 0.32 -0.02 0.30 0.02 0.31 0.60 
JPN -0.01 0.52 0.49 0.52 -0.01 0.32 0.02 0.43 0.40 
KAZ 0.04 0.39 0.62 0.39 0.04 0.30 0.02 0.38 0.54 
KOR -0.03 0.38 0.63 0.38 -0.02 0.49 0.02 0.19 0.45 
LTU -0.08 0.32 0.69 0.32 -0.06 0.53 0.02 0.21 0.45 
LUX -0.02 0.33 0.69 0.33 -0.03 0.42 0.02 0.23 0.53 
LVA -0.12 0.29 0.72 0.29 -0.12 0.55 0.02 0.25 0.46 
MAC -0.17 0.42 0.70 0.38 -0.16 0.42 0.02 0.32 0.53 
MEX -0.08 0.35 0.64 0.35 -0.08 0.36 0.01 0.30 0.53 
MNE -0.06 0.31 0.67 0.32 -0.07 0.28 0.02 0.31 0.59 
MYS -0.01 0.32 0.69 0.32 -0.01 0.34 0.02 0.29 0.59 
NLD -0.01 0.62 0.36 0.63 -0.01 0.27 0.02 0.56 0.30 
NOR 0.00 0.15 0.87 0.15 0.00 0.66 0.02 0.09 0.47 
NZL -0.04 0.21 0.80 0.21 -0.03 0.54 0.02 0.14 0.54 
PER -0.12 0.46 0.58 0.44 -0.13 0.29 0.02 0.49 0.49 
POL -0.01 0.22 0.79 0.22 -0.01 0.65 0.02 0.12 0.41 
PRT -0.03 0.28 0.72 0.28 -0.02 0.57 0.02 0.15 0.45 
QAT -0.05 0.45 0.53 0.46 -0.06 0.12 0.02 0.45 0.52 
ROU -0.01 0.50 0.56 0.47 -0.02 0.24 0.02 0.42 0.52 
RUS -0.05 0.29 0.73 0.28 -0.05 0.50 0.02 0.22 0.52 
SGP -0.01 0.36 0.65 0.35 -0.01 0.42 0.02 0.23 0.51 
SRB -0.03 0.47 0.54 0.47 -0.03 0.36 0.02 0.38 0.43 
SVK -0.12 0.44 0.54 0.45 -0.10 0.46 0.02 0.33 0.36 
SVN -0.10 0.51 0.48 0.52 -0.09 0.38 0.02 0.41 0.35 
SWE 0.00 0.13 0.89 0.13 0.00 0.59 0.02 0.09 0.55 
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Country 
Unconditional Model Conditional Model 

Intercept 𝝉𝝉𝟎𝟎𝟎𝟎 𝝈𝝈𝟐𝟐 ICC Intercept Std. Regression Coef.  
(Corr. Est.) SE 𝝉𝝉𝟎𝟎𝟎𝟎 𝝈𝝈𝟐𝟐 

TAP -0.03 0.43 0.60 0.42 -0.02 0.51 0.02 0.22 0.39 
THA -0.07 0.40 0.46 0.46 -0.07 0.17 0.02 0.39 0.44 
TUN -0.03 0.49 0.52 0.48 -0.04 0.21 0.02 0.43 0.49 
TUR -0.11 0.59 0.36 0.62 -0.11 0.21 0.02 0.52 0.33 
URY -0.10 0.44 0.60 0.42 -0.09 0.35 0.02 0.38 0.49 
USA 0.00 0.22 0.78 0.22 0.00 0.51 0.02 0.15 0.54 
VNM -0.08 0.57 0.50 0.53 -0.08 0.36 0.02 0.44 0.40 
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